
An Illustration of the Benefits of the
MIPS® R12000® Microprocessor and
OCTANETM System Architecture
Ian Williams

W
h

it
e

 P
a

p
e

r

Overview
In comparison with other contemporary microprocessors, many running at significantly higher clock rates,
the MIPS R10000® demonstrates competitive performance, particularly when coupled with the OCTANE
system architecture, which fully exploits the microprocessor’s capabilities.

As part of Silicon Graphics’ commitment to deliver industry-leading application performance through advanced
technology, the OCTANE platform now incorporates both system architectural improvements and a new-
generation MIPS microprocessor, R12000. This paper discusses the developments in the MIPS R12000
microprocessor design and describes the application performance improvements available from the combina-
tion of the microprocessor itself and OCTANE system architecture updates.

Table of Contents

1. Introduction—OCTANE in the Current Competitive Landscape
Summarizes the performance of OCTANE relative to current key competitive systems and micropro-

cessors, highlighting MIPS R10000 strengths and weaknesses.

2. Advantages of MIPS R10000 and MIPS R12000 Microprocessors

2. 1 Architectural Features of the MIPS R10000 Microprocessor
Describes the MIPS R10000 microprocessor’s strengths in detail.

2.2 Architectural Improvements of the MIPS R12000 Microprocessor
Discusses the developments in the MIPS R12000 microprocessor to improve performance.

3. OCTANE System Architecture Improvements
Describes the changes made to the OCTANE system architecture to complement the MIPS R12000

microprocessor.

4. Benefits of MIPS R12000 and OCTANE Architectural Changes on Application Performance
Through a real customer test, shows in detail how the features described in the two previous sections

translate to application performance.

5. Summary—OCTANE on the Competitive Horizon
This section summarizes the strengths of MIPS R12000 and OCTANE compared with recent competitive

announcements from IBM, Sun, and HP.

6. Acknowledgments

7. References

An Illustration of the Benefits of the
MIPS® R12000® Microprocessor and
OCTANETM System Architecture
Ian Williams

1. Introduction—OCTANE in the Current Competitive Landscape
When introduced in 1996, the MIPS R10000 microprocessor incorporated many advanced features. Operating

in the Indigo2TM platform at clock speeds of 175 and 195 MHz, the systems demonstrated industry-leading

performance in the desktop workstation marketplace across the spectrum of applications, from entertainment

to geophysical, science, medical, and engineering.

Subsequently, the OCTANE system was launched; it incorporated the same MIPS R10000 processor, at 195

MHz, along with Indigo2 IMPACTTM graphics, called SI and MXI graphics. Due to the system design, which

included advanced components such as the crossbar switch, OCTANE realized application performance

improvements in both CPU and graphics-oriented activities ranging from 10% to 50%. In some cases the

improvements were even higher.

Next, MIPS R10000 clock speed was increased 28% to 250 MHz, yielding an improvement in application

CPU performance of typically 25%, and the introduction of E-series graphics yielded a further 20% graphics

performance boost for many applications.

Figure 1 shows the system architecture of OCTANE and the key components of the MIPS R10000 micro-

processor, heart memory controller, crossbar system interconnect switch, and SI graphics. For a full description

of the OCTANE system architecture see the OCTANE Technical Reference guide [1].

Figure 1. OCTANE System Architecture

Both the SPECint95 and SPECfp95 suite of benchmarks are developed from a range of real-world application

examples, specifically chosen to exhibit integer and floating point dominated behavior, respectively, and are

useful to position OCTANE against current competitive systems. The published baseline and peak results for

both the SPECint95 and SPECfp95 test suites are shown in Figures 2 and 3, respectively, for a range of current

desktop systems, including OCTANE. The full range of SPEC results is available from their Web site [2].

1MB
Secondary

Cache

Multiplexer

R10000
Microprocessor

Graphics
2nd Graphics

or XIO

Bridge
(SCSI…)

XIO

XIO

Processor Bus (SysAD)
800 MB/Sec

1.0GB/Sec
Memory Bus

Heart
Memory

Controller

Main Memory
(SDRAM)

Crossbar

7 Bidirectional
Independent
Data Paths

1.6GB/Sec XIO
Interconnect

Bridge
(PCI…)

Although typically the peak SPECint95 and the SPECfp95 results are quoted when comparing system CPU

performance, the base results have been included since they represent a microprocessor’s performance with-

out the benefit of aggressive software optimization. Because it can be difficult to obtain a high level of

optimization for all sections in a large application, looking at both the base and peak results is important to

provide a more accurate prediction of a microprocessor’s performance.

Figure 2. Published SPECint95 Results for OCTANE and Competitive Systems

Figure 3. Published SPECfp95 Results for OCTANE and Competitive Systems

Clearly the SPECint95 results for Sun UltraSPARC II 360 MHz demonstrate a significant advantage from

aggressive compiler optimization since without compiler optimizations, MIPS R10000 exhibits a slight

performance advantage. The IBM PowerPC 604e running at 375 MHz in the RS/6000 43P-150 results also

show relatively strong integer performance; however, its floating point performance is poor and the effects of

this are likely to be evident in application performance. The same applies to the Intel Pentium II 450 MHz,

which, although again demonstrating very good integer performance, has poor floating point performance.

13.0

OCTANE
MIPS R10000

250 MHz

Sun Ultra 60
1360

360 MHz

IBM RS/6000
43P-150
375 MHz

IBM RS/6000
43P-260
200 MHz

HP C240 PA-
8200

240 MHz

Intel Pentium
II 450 MHz
SE440BX

13.6
12.8

16.1

SPECint_base95 SPECint95

14.5
15.1

12.5 13.1

16.3
17.3 17.2 17.2

19.2

OCTANE
MIPS R10000

250 MHz

Sun Ultra 60
1360

360 MHz

IBM RS/6000
43P-150
375 MHz

IBM RS/6000
43P-260
200 MHz

HP C240
 PA-8200
240 MHz

Intel Pentium
II 450 MHz
SE440BX

20.3 21.9
23.5

SPECfp_base95 SPECfp95

9.76 10.1

27.6
30.1

23.0
25.4

11.8 12.9

The SPECfp95 results for both IBM Power3 and HP PA-8200 show an advantage through aggressive compiler

optimization. To illustrate this, Figures 4 and 5 show the ratio of SPECfp95 to SPECfp_base95 for both HP

PA-8200 and IBM Power3 relative to MIPS R10000 across all SPECfp95 tests.

Figure 4. Comparison between PA-8200 and MIPS R10000 of SPECfp95 to
SPECfp_base95 Results for All Tests

Figure 5. Comparison between Power3 and MIPS R10000 of SPECfp95 to
SPECfp_base95 Results across All Tests

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2c

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
plu

12
5.

tu
rb

3d

14
1.

ap
si

14
5.

fp
pp

p

14
6.

wav
e5

1.1

1.3

OCTANE MIPS R10000 250 MHz IBM R/S600 43P-260 Power3 200 MHz

1.1

1.4

1.0 1.0 1.0
1.1

1.0 1.0

1.2

1.0 1.0
1.1

1.0
1.11.1

1.0
1.1

1.0

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2c

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
plu

12
5.

tu
rb

3d

14
1.

ap
si

14
5.

fp
pp

p

14
6.

wav
e5

1.1
1.0

OCTANE MIPS R10000 250 MHz IBM R/S600 43P-260 Power3 200 MHz

1.1

1.4

1.0

1.1
1.0 1.0

1.1 1.1

1.0 1.0
1.1

1.2

1.0 1.0
1.1

1.0
1.1

1.0

Although the architecture of both the PA-8200 and Power3 microprocessors is designed to deliver high

floating point performance, clearly the SPECfp95 results for both also show the benefit of aggressive

compiler optimization, yielding large performance increases on one or two tests within the overall suite.

An interesting comparison between OCTANE and HP C240 can also be made from a system perspective:

due to the size and complexity of the PA-8200 design there is insufficient space on the chip to locate a

primary cache. The HP C240, therefore, employs a single-level 4MB off-chip cache. In order to provide

sufficient bandwidth between the cache and the processor, thereby avoiding significant performance impli-

cations, fast memory is required. The inclusion of this amount of expensive memory has a significant impact

on overall system cost. Through the on-chip primary cache, coupled with a smaller secondary cache, MIPS

R10000 in OCTANE is able to deliver competitive application performance at a lower list price.

As shown in the above results, the Power3 microprocessor clearly has strong floating point performance,

however, its integer performance is lacking in comparison. When comparing application performance, the

RS/6000 43P-260 with the Power3 microprocessor running at 200 MHz presents strong competition to

MIPS R10000 250 MHz in OCTANE. There are some situations, however, where the IBM R/S6000 43P-260

isn’t quite so formidable: Figures 6 and 7 show the published baseline results for the SPECint95 129.compress

test and the SPECfp95 146.wave5 tests, respectively. The 129.compress test represents the compression of

large text files (about 16MB) and the 146.wave5 test represents the solving of Maxwell’s equations on a

Cartesian mesh in an electromagnetic example. Clearly MIPS R10000 running at 250 MHz in OCTANE is

very competitive with IBM R/S6000 43P-260 and all other systems.

Figure 6. Published SPECint95 129.compress Base Test Results.

OCTANE
MIPS R10000

250 MHz

Sun Ultra 60
1360

360 MHz

IBM RS/6000
43P-150
375 MHz

IBM RS/6000
43P-260
200 MHz

HP C240
240 MHz

Intel Pentium
II 450 MHz
SE440BX

13.9 14.0

11.1
13.1

16.5

13.5

Figure 7. SPECfp95 146.wave5 Base Test Results

So why is MIPS R10000 in OCTANE able to deliver competitive application performance at slower clock

speeds, offering balanced integer and floating point performance? The answer lies in the architectural

features of its design, and these will be covered in the next section. When these features are combined with

the OCTANE system architecture, both are synergistic to overall system performance and throughput.

2. Advantages of MIPS R10000 and MIPS R12000 Microprocessors
This section is divided into two subsections: the first describes the advanced architectural features in MIPS

R10000 that allow it to deliver very competitive application performance, and the second extends this

further, describing in detail the improvements in MIPS R12000.

2.1 Architectural Features of the MIPS R10000 Microprocessor

MIPS R10000 is a four-way superscalar RISC microprocessor. It fetches and decodes four instructions per

cycle and speculatively executes beyond branches with a four-entry branch stack. It uses dynamic out-of-

order execution, implements register renaming logic using map tables and achieves in-order graduation for

precise exception handling.

This section explains these features and their relevance to application performance. Inevitably, however, some

aspects probably don’t receive as much attention as they should, so the reader is invited to refer to [2] and

[3] for further details. It’s also assumed that most readers will be familiar with many of the computing terms

and concepts discussed. Some readers, however, may not be as familiar, so for their benefit the first part of

this section provides a brief description of some of the key technologies in MIPS R10000 before discussing

the architecture in further detail. References [4] and [5] provide further information on the more general

aspects of microprocessor and computing technology.

Most system users are probably familiar with the concept of cache memory: a phenomenon called locality of

reference shows that executing code has a tendency to access memory in close proximity to other recently

accessed locations. When accessing a memory location, by loading it and the data immediately surrounding

it into a small amount of high-speed cache memory, subsequent accesses may be fulfilled from cache, there-

fore significantly reducing the overall time spent accessing main memory. MIPS R10000 uses two levels of

set-associative cache memory: the primary level is on-chip and has 32KB for data and 32KB for instructions;

the off-chip second level is unified for both data and instructions and can range in size from 512KB to 16MB.

In OCTANE its size was previously set at 1MB, although recently a 2MB option has been introduced.

OCTANE
MIPS R10000

250 MHz

Sun Ultra 60
1360

360 MHz

IBM RS/6000
43P-150
375 MHz

IBM RS/6000
43P-260
 200 MHz

HP C240
240 MHz

Intel Pentium
II 450 MHz
SE440BX

27.0 25.9

9.07

20.8

36.9

12.0

Pipelining is a technique that is applied to many situations to speed up the overall execution of a process. In

the simplest case, an overall task is divided into a series of operations, or stages, that when applied sequen-

tially perform the overall task; however, each operation can also be performed in parallel with the rest. As

one item progresses through the pipeline, other items can be initiated before the first has completed all

stages, and over time, with many items progressing through the pipeline, this yields a significant increase in

throughput. When applied to a microprocessor, the simple pipeline is extended so that some stages may be

performed individually rather than all sequentially—contributing to the completion of a overall task.

Executing an integer instruction for example, is independent of executing a floating point instruction. Since

both instructions need to be fetched from main memory, or cache, along with associated data, which may

take a varying amount of time, pipelining the whole process yields significant throughput advantages. When

a microprocessor can perform several operations simultaneously in one stage of its pipeline it is called

superscalar. The MIPS R10000 microprocessor is superscalar.

Microprocessors using pipelining also use a clock to synchronize their overall operation and the individual

stages. Operations, therefore, are typically defined as taking a certain number of clock ticks; however, all

operations in the pipeline may not take the same length of time. Because division, for example, is usually

implemented as a series of additions, it’s easy to see why this might arise.

Pipelines work most efficiently when there is a continuous flow of instructions through them. If for whatever

reason a pipeline needs to be stopped, then depending on how many stages it contains, or depth as it is also

called, there will be a long delay while the instructions currently being executed are flushed. Such a situation

can occur with a branch instruction as would be generated from an IF-THEN loop within code. One method

to significantly reduce the potential performance penalties that may arise between encountering a branch

instruction and until the outcome of the branch is known is to use branch prediction. This is where the pro-

cessor takes a guess at which path to follow after the branch and continues to issue instructions into the

pipeline after following this path. Because it’s not known whether the branch decision is correct when these

instructions are issued, they are executed speculatively until the result of the branch is known. If the branch

decision turns out to be correct, no interruption occurs. If the branch decision turns out to be incorrect, then

all the speculative instructions are discarded. Clearly the correct branch choice won’t be made all the time;

however, if it is on balance, then the overall effect can be a significant improvement in throughput and perfor-

mance. The MIPS R10000 microprocessor employs both branch prediction and speculative execution.

Because of the effects of caching, some instructions may have to wait longer for their data to be retrieved

from memory. As a result, when many instructions can be scheduled and executed in a pipeline, being able to

issue them for execution only in the order in which they arrive could yield a significant reduction in pipeline

throughput and efficiency. A technique used on MIPS R10000 to overcome this is called out-of-order execu-

tion, which allows instructions to be issued independent of the order in which they are decoded. After

execution the instructions are regrouped back into their original order in the active list. Completed

instructions can be removed from the active list in order. This process is called graduation. After being

retrieved from main memory or cache, an instruction’s data, or operands, are stored in registers during

execution. To allow an instruction’s operands to correctly follow it as it progresses through the execution

pipeline, a technique called register renaming is used. This ensures that each instruction can unambiguously

reference its operands regardless of the order in which it is being executed.

All current high-performance workstations use a virtual memory model that allows efficient use of a system’s

main memory. It also makes application programming easier since no specific knowledge is needed about

architectural features of a system such as how memory is allocated, etc. Applications reference virtual memory

addresses that are subsequently translated into physical locations by the operating system kernel. Since every

memory access for both instructions and data goes through this mechanism, most microprocessors employ

dedicated hardware to speed up the translation using a translation lookaside buffer (TLB). To ease

organization, speed, and access, main memory is divided into a series of pages and an address corresponds to

a page number and offset. The TLB caches recently accessed pages, and if a desired address happens to be in

one of those pages, the translation will occur very quickly. If an address causes a TLB miss, then there is a

significant delay while the page mapping for the particular process is accessed and the address subsequently

translated. MIPS R10000 employs a 64-entry fully associative TLB. A smaller eight-entry TLB, which

contains a subset of the main one, is dedicated to instructions. Full associativity allows TLB entries to vary

in size; hence MIPS R10000 can accommodate different memory page sizes, between 4B and 16MB. This

significantly enhances the ability to tune a system to meet the demands of a wide range of applications.

As mentioned above, both primary and secondary caches on MIPS R10000 are set associative. Set associat-

ivity refers to how the cache memory is organized. It is searched when the processor requests the contents of a

memory location. Instead of searching through the entire contents of cache memory for a match to the given

address, only a small set of locations are searched in parallel. Conceptually a set-associative cache can be

thought of as having several ways that comprise a series of sets that are all a cache-line in length (see Figure

8). In a two-way set-associative cache, therefore, there are two ways. The number of sets and the cache-line

length, however, depend on both the processor and the cache level.

Figure 8. Organization of an X-Way Set-Associative Cache

Searching the set-associative cache on MIPS R10000 begins with the memory address, which comprises

several components: the tag, the index, a bit that determines the cache bank, and two bits to determine the

specific double word in a set. When a memory address is given to cache, the index selects the appropriate set

to search. All ways within the cache typically have a dedicated tag array, sometimes called a directory, with

the number of entries corresponding to the number of sets. Once the set is known, the tag array in each way

is searched and a hit occurs if the tag matches the entry. The double word in a cache line is then determined

by the corresponding two bits in the address and the contents of the address are returned to the CPU. If a

match is not found in any way, a miss occurs and is reported back to the CPU. Figure 9 shows this process

for the primary data cache on MIPS R10000.

Both primary data and instruction caches on MIPS R10000 are implemented such that the tags are checked

in both ways simultaneously, allowing searches to be made across both ways in parallel. Since both these

caches are on-chip, this is a more efficient way to implement this compared with performing the searches

sequentially. The secondary cache, however, is off-chip, and implementing it in the same fashion would

physically increase the number of connectors necessary to connect the CPU to the external world, as well as

potentially cause inefficiencies when accessing memory that is multiplexed. To overcome this MIPS R10000

allows both ways to share the same path to the processor and incorporates a way prediction, or most

recently used (MRU), table. The MRU table significantly improves the chances of making the choice the

correct way to search first.

If a primary cache miss occurs during a read, the address is passed to secondary cache. If the secondary

cache hits, the least recently used primary cache line is replaced with data from secondary cache. If the

secondary cache misses, a request is sent to retrieve the relevant data from main memory and the least

Way 0

Set 0

Set 1

Set 3

Set..

Set N-1

Way1

Search across all ways

Way ... Way X-1

recently used secondary cache line is replaced. This replacement algorithm is called a least recently used

(LRU) mechanism.

MIPS R10000 employs a write-back protocol in the cache hierarchy. This means that stored data is always

written from the CPU into primary cache. When lines in primary cache are replaced with lines from secondary

cache the replaced line is first checked to see if it has been modified. If it has, it is written to secondary cache

before being replaced. In a similar way, when a line in secondary cache is replaced it is first checked to see if

it has also been modified and, if so, is written back to main memory.

Figure 9. MIPS R10000 Primary Data Cache

In a write-through cache, every store instruction updates both the cache and main memory. This can generate a lot

of traffic on the system bus. A write-back protocol can yield a performance advantage with a significant reduction

in bus traffic when cache sizes are large to ensure hits in all levels within the hierarchy.

The MIPS R10000 primary data cache implements one parity bit per byte. The primary instruction cache has

parity for each instruction. The secondary cache stores a 9-bit Error Checking and Correction (ECC) code

for each quadword. This provides single-bit error correction and double-bit error detection. Neither the

parity nor ECC checking incurs an overhead on cache access.

Figures 10 and 11 detail the architecture and pipeline stages of the MIPS R10000 microprocessor and outline

the steps when executing instructions. The following paragraphs refer to these diagrams and explain the pro-

cess of retrieving and executing instructions using many of the terms just described.

1. The index addresses
the appropriate set.

3. For the defined set, the
tags are compared across
both ways to determine
if there is a hit.

=

Sets

4. If there is a hit, the
data with matching tag
is sent to the CPU.

2. DW part of address
selects a double word.

Key

B = Bank
DW = Doubleword

Ta
g

Way 0 Way 1

Tag Array Data

Data
to CPU
(64 bits)

Cache-line = 8 Words = 128 BytesIn
de

x

Virtual Page Address

Physical Page Address

Address Translation (TLB)

…Virtual AddressIndex B DW ByteRegion

=

……………………………………………Physical Address

Figure 10a. MIPS R10000 Microprocessor Architecture

5-bit Logical Register Numbers
Four 36-bit Instructions in Parallel

 Data Cache Refill And Write Back

Instruction
Predecode

Instruction
Decode

Branch

Branch Stack
Instruction

Cache Refill

Instruction
Fetch

Instruction Decode

Instruction Issue 5 Pipelined Execution Units

Register Renaming

Branch
Predict

Instruction
Cache
(32 KB)

In
st

ru
ct

io
n

C
ac

he
 R

ef
ill

Active
List

(32 entries)

Secondary
Cache Controller

(128 bits)

Systems
Interface
(64 bits)

Free
Register

Lists

Register
Map

Tables

Fp
Queue

(16
 Entries)

Busy Bit
Tables

Address
Queue

(16
entries)

Data
Cache
(32 KB)

AddrStack

TLB
(64x2 entries)

Address
Calc

Integer
ALU1

Integer
ALU2

CP0
Load
Store

Load
Store

(64x64)
5 Read
3 Write

Fp
Register

File

Integer
Register

File

(64x64)
7 Read
3 Write

Integer
Queue

(16
entries)

Stage 1 Stage 2 Stage 3

Stage E0 Stage E1 Stage E2 Stage E3 Stage E4

FP Adder

64-bit Data Paths6-bit Physical Register Numbers

Align PackAdd/N

FP Multiplier
Mult PackSum/N

Sqrt

S
w

itc
h

Div

Figure 10b. MIPS R10000 Pipeline Timing

The instruction fetch pipeline fetches and decodes four instructions simultaneously from the instruction cache.

In order to ensure this process occurs rapidly, instructions are predecoded, wherein fields are rearranged and

a code is appended indicating the required execution unit before they are placed in the instruction cache. Each

decoded instruction is also recorded in the active list, which has 32 entries. The active list also retains the

original program order.

During stage 1, shown in Figures 10a and 10b, instructions are fetched sequentially. During stage 2 target

addresses are calculated. When conditional branch or jump instructions occur, a new program address that

introduces a one-cycle delay will be selected. The condition determining a branch may not be known for

many more cycles, so if the processor were to wait until the result was known it would introduce a

significant delay, yielding a noticeable impact on application performance. Studies have shown that branch

instructions typically comprise between 15-20% of all instructions for many application codes. Accurately

predicting correct branch outcomes and continuing to fetch and execute instructions will remove a major

potential bottleneck, significantly improving application performance. To this end, MIPS R10000 uses branch

prediction based upon a 2-bit, 512-entry table.

Req

2 Floating-point

Fetch

I-cache Branch Addr.

Dec Map Write

Busy?

Store

Load

Tag Check

1 Load/State

2 Integer
(dynamic issue
on operands)

Integer execution unit,
3 pipelines:

Dynamic issue on integer
register operands

Load/store pipelines

Data cache control

May merge with AdrCalc

(Integer or floating point
registers)

Floating point execution
unit, 2 pipelines

Dynamic issue on floating
point registers

Instruction Fetch
Pipeline

Req

Multiply

Alignment Add Pack

Sum Product PackIssue

Queues

Issue

Issue

Issue

ALU2

ALU1

Issue

Grad AStk

AStk

Setup

Setup

DC data

DC dataRetry

Req

RF

RF

Req

Req

Req

Req

RF

RF

Store AlignRF

RF ACalc Exc.TLB AStck

RF

RF

RF

RF RF Read operands from register file

Write results in register file

Address Calulation Pipeline

Cache Tag Check Pipeline

Load Instruction Pipeline
(speculative)

Store Instruction Pipeline
(at graduation)

Flag Exceptions

Instruction fetch and decode pipeline queues
4 instructions in parallel.

Up to 4 branch instructions are predicted;
fetching continues speculatively until prediction verified.

RF

Stage 1 Stage 2 Stage 3

Stage E0 Stage E1 Stage E2 Stage E3 Stage E4

Load AlignRF RF

Setup DC TagRetry

Tag Check

When a branch instruction is fetched and decoded, the tag is used to reference a counter value in the prediction

table. When the condition determining the branch is subsequently known, if the branch was taken, the

counter value increments by one, and it decrements by one if the branch was not taken. When the same

instruction is encountered again, the high-bit of the 2-bit counter value determines if the branch is taken or

not. Again, if the branch was subsequently taken the value increments by one and it decrements by one if

the branch is not taken. Using counters with more bits typically hasn’t shown a significant increase in overall

prediction accuracy. To facilitate quick recovery should a branch decision turn out to be incorrect, MIPS

R10000 stores its state at the time the branch occurs in a 4-entry branch stack. When instructions are specu-

latively executed after a branch, if the decision turns out to be incorrect all these instructions are discarded

and register values etc. are reloaded from the branch stack.

During stage 2, four fetched instructions are decoded and loaded into one of three queues depending on what

functional unit is required: integer, floating point, or load store. As part of the decoding process operands

and destination registers are renamed. Register renaming, as this is called, is an elegant way to handle

dependencies during out-of-order execution. Logical registers are mapped into physical registers in a process

similar to mapping virtual address into physical ones.

Register renaming occurs in a similar fashion for both integer and floating point registers. It is explained as

follows: logical registers are the registers defined in the instruction set architecture. They are selected by

5-bit fields within each instruction. Physical registers are the actual memory elements that store register

values within the microprocessor. During instruction decode the logical registers are mapped to physical

registers. After mapping dependencies can be determined by comparing physical registers without concern for

the original instruction order. There are 64 physical integer and 64 physical floating point registers. The

32-entry mapping table sortes the 6-bit physical register number currently associated with each logical

register. There is also a 32-entry free list that stores the physical registers numbers not currently used. As a

new mapping is created, its physical register is taken from the free list. Later as it graduates, its physical

register is returned to the free list. When a branch is predicted, shadow copies are made of both integer and

floating point mapping tables, the active list write pointer, and both free list read pointers.

During stage 3, once their operands become available and are read from the register file, instructions are issued

to the appropriate pipeline for execution during stages E0 to E4. As shown in Figures 10a and 10b, the five

execution units comprise two integer arithmetic logic units (ALUs), a floating point multiplier, a floating point

adder, and a load/store unit. Each execution unit is pipelined with a single cycle repeat rate, which means that

another instruction and operand(s) can be issued in the next cycle after the last one was issued.

On MIPS R10000, instructions in the integer and floating point queues are issued to the two ALUs after

their operands become available, but in no particular order. Likewise, instructions in the floating point

queue are issued to the floating point adder or multiplier. Once instructions in the integer or floating point

queues are issued, they are deleted. Instructions in the address queue are issued to the address calculation

unit and data cache. The data cache has two independent banks that can operate concurrently when loading,

storing, and refilling. Loading refers to transferring data from cache to the processor register files. Storing

refers to transferring data from the processor register files back to cache. Refilling refers to transferring a

cache line from secondary cache or main memory to the data cache.

Transferring data from main memory to cache takes a relatively long time. For performance reasons the MIPS

R10000 load and store operations can overlap with up to four cache refills and can be performed out of

order. During a cache refill the particular word of interest is transferred first, and can also be passed directly

to the execution units, thus further improving overall performance.

2.2 Architectural Improvements of the MIPS R12000 Microprocessor

The main architectural improvements of MIPS R12000 compared with MIPS R10000 are summarized in

Figure 11a, which shows the microprocessor architecture and timing pipeline. The timing pipeline is shown

in Figure 11b.

Figure 11a. Summary of Changes Between MIPS R10000 and
MIPS R12000 Microprocessor Architectures

5-bit Logical Register Numbers
Four 36-bit Instructions In Parallel

Data Cache Refill and Write Back

Instruction
Predecode

In
st

ru
ct

io
n

C
ac

he
 R

ef
ill

Instruction
Decode

Branch StackInstruction
Cache Refill

Instruction
Fetch

Instruction
Buffer

Instruction Decode

Instruction Issue 5 Pipelined Execution Units

Register Renaming

Branch

Instruction
Buffer

Branch
Predict

Instruction
Cache
(32 KB)

Positive
List

(48 entries)

Secondary
Cache Controller

(128)

Systems
Interface
(64 bits)

Free
Register

Lists

Register
Map

Tables

Fp
Queue

(16
 entries)

Busy Bit
Tables

Address
Queue

(16
entries)

Data
cache

(32 KB)

AdrStack

TLB
(64x2 entries)

Address
Calc

Integer
ALU1

CP0
Load
Store

Load
Store

(64x64)
5 Read
3 Write

FP
Register

file

Integer
Register

File

(64x64)
7 read
3 write

Integer
Queue

(16
entries)

Stage 1 Stage 2 Stage 3 Stage 4

Stage E0 Stage E1 Stage E2 Stage E3 Stage E4

FP Adder

64-bit Data Paths

Align PackAdd/N

FP Multiplier
Mult PackSum/N

Sqrt

S
w

itc
h

Div

50% increase in active
list from 32 to 48 entries.

4x increase in branch prediction table,
now has 2048 entries instead of 512.

Now has option for branch path dependent
on history of previous branch paths.

32-entry branch address target cache.

Split transfer from SysAD bus to secondary
cache to shorten busy periods.

2 x increase in Most Recently Used (MRU)
table to 16K-bit paths.

8-entry content addressable memory
branch target address cache buffers
tags written to each cache bank.

Relaxed data cache set locking.

Load/store instructions use
integer queue.

Address queue has
seperate pipelines for
address calculations

and tag check.

Extra Pipline
Storage

Figure 11b. MIPS R12000 Timing Pipeline

On MIPS R12000 the active list has been increased 4x, from 32 to 48 entries. Increasing the size of the

active list allows more commands to be either waiting in queues for execution or be executing in the

instruction units. When encountering a branch, the increase also allows the processor to speculatively

execute more commands, which is also called deeper speculation. In most situations, both these effects will

yield an increase in application performance.

The address queue now has separate pipelines for address calculation and tag checking. This improves overall

efficiency and can improve application performance. For example, if the cache tag memory is busy, the

address calculation can independently determine the cache bank, which can subsequently save a tag check

cycle.

On MIPS R10000, transferring data from the system bus to the secondary cache locked up the cache

controller for a significant period while a complete cache line was read in from main memory. Since the

system bus clock rate is significantly slower than the processor clock rate, a full cache line transfer can cause

the secondary cache controller to wait dozens of cycles before completion. During this time no other requests

can be submitted. On MIPS R12000, transferring a cache line from the system bus to the secondary cache is

divided into sub-blocks, four for the data cache and three for the instruction cache, with idle cycles between

each sub-block.

Req

2 Floating-point

FetchI-cache

Branch Addr.

Dec Map Write

Busy?

Store

Load

Tag Check

1 Load/Store

2 Integer

Integer execution unit,
3 pipelines:

Dynamic issue on integer
register operands

Load/store pipelines

Data cache control

May merge with AdrCalc

(Integer or floating point
registers)

Floating point execution
unit, 2 pipelines

Dynamic issue on floating
point registers

Instruction Fetch
Pipeline

Req

Multiply

Alignment Add Pack

Sum Product PackIssue

Queues

Issue

Issue

Issue

ALU2

ALU1

Issue

Grad AStk

AStk

AStk

Setup

Setup

DC data

DC dataRetry

Req

RF

RF

Req

Req

Req

Req

RF

RF

Store AlignRF

RF ACalc Exc.TLB AStck

RF

RF

RF

RF RF Read operands from register file

Write results in register file

Address Calculation Pipeline

Cache Tag Check Pipeline

Load Instruction Pipeline
(speculative)

Store Instruction Pipeline
(at graduation)

Flag Exceptions

Instruction fetch and decode pipeline queues
4 instructions in parallel.

Up to branch instructions are predicted;
fetching continues specutively until prediction verified.

RF

Stage E0 Stage E1 Stage E2 Stage E3 Stage E4

Load AlignRF RF

Setup DC TagRetry

Tag Check

Req AStk

During these idle cycles, other operations can be initiated by the secondary cache controller. If data arrives

on the system bus during this time it will be buffered until the transfer resumes. Overall, this change substan-

tially reduces the time spent by other operations waiting to be initiated. This improvement significantly helps

performance for applications that frequently miss both primary and secondary cache.

Another large improvement in MIPS R12000 is a 2x increase in the size of the MRU, or way prediction table

compared with MIPS R10000. This now allows a bit to be assigned to the way predict in each set of 4Mb of

secondary cache. This larger table better predicts which way to search first, thus saving cycles when checking

secondary cache. This improves application performance when secondary cache misses are a significant factor.

Two modifications to improve MIPS R12000 performance for branch instructions. First, a 4x increase in the

length of the branch prediction table improves its accuracy. Second, a 32-entry Branch Target Address Cache

products the target addresses for branch instructions. In MIPS R100000 every taken branch causes a 1-cycle

bubble in the pipeline while the target address is calculated. This bubble is eliminated whenever the branch

hits in the target cache. Branch instructions can comprise between 15% and 20% of the total number of

instructions in many applications. Thus, the branch prediction table length increase and the branch target

address cache can significantly contribute to improve overall application performance.

On MIPS R10000, instructions couldn’t be decoded if the address queue became full. On MIPS R12000, all

load, store, cacheop, and prefetch instructions are sent to the integer queue and issued to the address calcula-

tion unit. They are then removed from the integer queue and placed in the load/store queue. Although this

puts additional instructions into the integer queue, they are usually issued and removed quickly. This change

considerably simplifies the design of this component of the processor without affecting application

performance.

Another improvement to MIPS R12000 is relaxed set locking of the data cache. On MIPS R10000 whenever a

load or store instruction accesses a cache-line, it locks the line until the instruction graduates. If another

instruction requires access to the same line before the first instruction is completed, both can share the same

lock. If, however, another instruction needs a different line within the same cache set, it is stalled until the

other instruction graduates. Allowing another instruction to lock the corresponding line in the other way of

the same set could give rise to a deadlock situation because of out-of-order execution. To prevent such a

deadlock situation, MIPS R10000 only allowed the oldest load or store instruction to obtain a lock on the

other cache way. In certain situations this may degrade performance since the oldest load or store instruction

may already own the lock on the first way, preventing further instructions from accessing the second way of

the cache for that set. MIPS R12000 allows instructions to obtain a lock on the second way provided it is

the oldest entry that does not already own a lock. Thus stop instructions that already own a lock do not

prevent other younger instructions from accessing the second way. The net effect in certain situations is less

contention in the data cache, which can yield a corresponding improvement in application performance.

3. OCTANE System Architecture Improvements
Figure 12 shows the OCTANE system architecture including MIPS R12000, with the architectural changes

highlighted.

Figure 12. OCTANE System Architectural Changes with MIPS R12000

As can be seen from Figure 12 the key change is that the secondary cache size is doubled to 2MB. Increasing

the secondary cache size increases the chances of the contents of a desired memory location being found in

cache, reducing the number of times the CPU has to access main memory. This yields a noticeable

improvement in application performance.

4. The Benefits of MIPS R12000 and OCTANE Architectural Changes
on Application Performance

This section shows how the combined effect of the MIPS R12000 microprocessor and OCTANE system

architectural improvements influence application performance on a real-world example. The application

used was CATIA Version 4, supplied by Dassault Systemes, and the test was a SolidE update operation per-

formed on a crankshaft. The model is shown in Figure 13.

The SolidE update operation automatically updates necessary geometry after a change has been made to some

aspect, or aspects, of a model. These changes may include modifications such as changing the radius of a

fillet or the diameter of a hole. From a system perspective the SolidE update operation is a very CPU-

intensive operation and will typically utilize the CPU very close to 100%, provided there is sufficient

physical memory to prevent paging.

2MB
Secondary

Cache

Multiplexer

R12000
Microprocessor

IMPACT
Graphics

2nd Graphics
or XIO

Bridge
(SCSI…)

XIO

XIO

Processor Bus (SysAD)
800MB/Sec

1.0GB/Sec
Memory Bus

Main Memory
(SDRAM)

Crossbar

7 Bidirectional
Independent
Data Paths

1.6GB/Sec XIO
Interconnect

Bridge
(PCI…)

100% Increase in secondary
cache size, 2MB

Figure 13. Crankshaft Model Used for SolidE Update Test, Supplied Courtesy
of DaimlerChrysler Corporation

The MIPS R10000 and MIPS R12000 microprocessors include performance counters which can be used to

measure internal performance. These counters measure metrics associated with cache performance,

instructions executed, etc., and were used to generate results for the CATIA SolidE update test. Some

counters changed slightly between MIPS R10000 and MIPS R12000 and where this affects comparisions the

differences are explained.

The results generated on both MIPS R10000 and MIPS R12000 used the same OCTANE chassis, with the

same operating system, installed on the same physical disks and using the same CATIA installation. In fact, the

only change between the tests for both microprocessors was to physically swap the processor modules.

To faithfully represent how a user would use the system, the SolidE update test was run in multiuser mode

and hence additional background processes, such as the CATIA license daemon, were running concurrently

with the main CATIA SolidE update task. The effect of these background processes was found to be neglig-

ible, since over several consecutive runs the variation in elapsed time was significantly less than 0.5%. Like-

wise, it’s also true that such background processes may also indirectly influence the test by causing subtle

changes in cache contents, etc. Such influences were again found to negligible since the method by which the

processor metrics presented below are gathered only records results for the process of interest. Furthermore,

several consecutive runs of the CATIA SolidE update test showed variations to be minimal.

Table 1 summarizes the CPU and overall system elapsed times seen during the SolidE update test for

OCTANE R10000 250 MHz 1MB secondary cache and OCTANE R12000 300 MHz 2MB secondary cache.

OCTANE R10000 OCTANE R12000 Speedup Relative to
200 MHz, 1MB 300 MHz, 2MB MIPS R10000

Secondary Cache Secondary Cache
Measured CPU time 21.220 16.950 1.25x

(seconds)

Measured overall system 22.880 17.990 1.27x

elapsed time (seconds)

Table 1. Summary of Measured CPU and Overall System Elapsed Times for
CATIA SolidE Update Test

Clearly the combined effect of MIPS R12000 processor and OCTANE system architectural improvements

demonstrates an overall performance improvement better than the 1.2x clock rate increase. This rest of this

section takes a closer look at how the processor and system architectural differences yield this result.

Increased Active List Length
The number of processor cycles, the issued/decoded instructions, and the graduated instructions and floating

point instructions observed during the CATIA SolidE update test for both MIPS R10000 and MIPS R12000

are shown in Table 2.

OCTANE R10000 250 MHz, OCTANE R12000 300 MHz,
1MB secondary cache 2MB secondary cache

Issued/decoded instructions 4.344E9 5.723E9

Graduated instructions 4.387E9 4.363E9

Graduated floating point 0.521E9 0.485E9

instructions

Cycles 5.241E9 4.900E9

Table 2. Summary of Processor Cycles During Execution, Issued/Decoded Instructions, and Graduated
Instructions During CATIA SolidE Update Test for Both MIPS R10000 and MIPS R12000

As can be seen from the results, the issued/decoded instructions for MIPS R12000 are significantly greater

than for MIPS R10000. The 50% increase in the active list from 32 to 48 entries contributes to this increase

by allowing more instructions to be speculatively executed. Several other features of MIPS R12000 may

indirectly contribute as well:

• Splitting transfers from main memory to secondary cache allows the secondary cache controller to

schedule other requests, which in turn allows more load and store instructions to be scheduled.

• The branch target address cache can potentially allow target addresses to be found more quickly,

allowing more instructions to be speculatively executed.

• Relaxing the data cache set locking will reduce contention in the cache controller across both ways,

thus also potentially allow more load and store instructions to be issued.

The effect of these changes, though, is likely to be more subtle compared with the direct effect of increasing

the active list.

These comparisons are influenced by minor changes in the performance counters between MIPS R10000 and

MIPS R12000. On MIPS R12000 decoded instructions represent a slightly different metric compared with

issued instructions on MIPS R10000. The difference is that issued instructions counts instructions issued to

the execution units. This doesn’t include certain instructions, such as no-ops. This may in turn yield a slight

increase in the MIPS R10000 count. Decoded instructions, however, are considered a more accurate measure

and was the reason why the metric was changed.

Even though both microprocessors ran exactly the same code on exactly the same operating system, the

slight reduction in graduated instructions, graduated floating point instructions, and cycles is likely to arise

due to indirect effects of some of the other changes in MIPS R12000. The direct effects of these changes are

covered later. Reduced cache contention combined with fewer misses may lead to fewer graduated load and

store instructions and better branch prediction will likely yield fewer instructions and floating point

instructions graduating. Both factors are likely to contribute to a reduction in cycles.

Separate Address Queue Pipelines and Use of Integer Queue for Load/Store Address Calculation
The issued/decoded loads and stores sent to the address calculation unit, along with the graduated loads and

stores from the address calculation unit, are shown in Table 3.

OCTANE R10000 250 MHz, OCTANE R12000 300 MHz,
1MB secondary cache 2MB secondary cache

Issued/decoded loads 1.200E9 1.272E9

Graduated loads 1.110E9 1.116E9

Issued/decoded stores 424.9E6 424.2E6

Graduated stores 395.6E6 396.4E6

Table 3. Summary of Issued/Decoded Loads, Graduated Loads, Issued/Decoded Stores, and
Graduated Stores to/from the Address Calculation Unit Seen During CATIA SolidE Update Test

for Both MIPS R10000 and MIPS R12000

The expected result of separating the address calculation and tag checking pipelines on MIPS R12000 would

be a slight increase in the issued load and store operations. The increased speculation depth on MIPS

R12000 may also yield additional load and store instructions being issued. In line with these predictions, the

results in Table 3 show a slight increase in issued/decoded load instructions between MIPS R10000 and

MIPS R12000. The increase is clearly small. It should be remembered that the specific section of executing

code and data will exhibit a deterministic effect on the number of load and store instructions relative to

other instructions, and on the dynamics of cache-line refills, etc. Other background processes, however, were

run concurrent to the test, and these may cause nondeterministic effects on the cache yielding slight variations

in these results. Also, as mentioned in the subsection above, comparing issued load and store instructions on

MIPS R10000 with decoded loads and stores on MIPS R12000 may also yield slightly higher values for

MIPS R12000.

Doubling Secondary Cache MRU Table
The instruction and data mispredictions arising in the secondary cache way prediction are summarized in

Table 4.

OCTANE R10000 250 MHz, OCTANE R12000 300 MHz,
1MB secondary cache 2MB secondary cache

Instruction misprediction 3.463E6 2.414E6

from scache way table

Data misprediction from 3.491E6 2.939E6

scache way prediction table

Table 4. Summary of Instruction and Data Misprediction from Secondary Cache Way Prediction Table
During CATIA SolidE Update Test for Both MIPS R10000 and R12000

As described above, doubling the size of the MRU table should yield significantly more accurate predictions

on which way to search first in the secondary cache. As the results in Table 4 clearly demonstrate, there is a

significant reduction in misprediction arising from the way prediction table for both secondary data and

instruction caches on MIPS R12000 compared with MIPS R10000. Since each misprediction introduces a

delay of several cycles, this improvement contributes to an overall improvement in application performance

when a large number of primary cache misses occur.

Relaxed Data Cache Set Locking
Primary and secondary data cache misses, along with quadwords written back from both primary data and

secondary cache, are summarized in Table 5.

OCTANE R10000 250 MHz, OCTANE R12000 300 MHz,
1MB secondary cache 2MB secondary cache

Primary data cache misses 36.681E6 35.663E6

Quadwords written back 20.848E3 20.246E3

from primary data cache

Store/prefetch exclusive clean 660.2E3 282.3E3

block in scache

Secondary data cache misses 8.772E6 7.381E6

Quadwords written back from 15.107E3 8.822E3

scache

Table 5. Summary of Primary and Secondary Data Cache Misses along with Quadwords Written
Back from Primary Data Cache and Quadwords Written Back from Secondary

Cache During CATIA SolidE Update Test for Both MIPS R10000 and R12000

As mentioned above, relaxing the data cache set locking on MIPS R12000 could yield a reduction in

contention when accessing data cache, which may in turn lead to fewer cache misses. The results in Table 5

show reduced misses for both the primary and the secondary data caches. It should also be remembered,

however, that as is described below, doubling the secondary cache size is also likely to significantly reduce

the secondary cache misses.

Reduced contention when accessing the data cache may also mean that load and store instructions

experience fewer delays when accessing cache. This may cause fewer requests to replace cache lines and may

also yield a reduction in the number of cache-lines marked dirty and hence written back to either secondary

cache or main memory. Clearly the results for the quadwords written back from primary data cache and

secondary cache shown in Table 5 reflect this result. The influence of increasing secondary cache size,

however, should again be noted.

4x Increase in Branch Prediction Table and Branch Prediction Based on History
The mispredicted branches and decoded/resolved conditional branches occurring during the CATIA SolidE

update test are summarized in Table 6.

OCTANE R10000 250 MHz, OCTANE R12000 300 MHz,
1MB secondary cache 2MB secondary cache

Mispredicted branches 118.5E6 103.6E6

Decoded/resolved conditional 484.6E6 495.0E6

branches

Table 6. Summary of Mispredicted Branches and Decode/Resolved Conditional Branches During
CATIA SolidE Update Test for Both MIPS R10000 and MIPS R12000.

By increasing the branch prediction table size, the number of stored branch instructions, along with their

predicted target addresses, can be increased. As mentioned above, large applications can show branch

instructions comprising between 15% and 20% of all instructions, so being able to store a greater number

of predicted branch paths is likely to yield a noticeable increase in correctly predicted branch choices. The

mispredicted branch results shown in Table 6 clearly confirm these expectations.

The decoded/resolved branches shown in Table 6 reflect the number of branches both correctly and incorrectly

predicted and hence, like the number of mispredicted branches, this result would be expected to decrease as

a result of the larger branch prediction table on MIPS R12000. The reason the results don’t reflect this,

however, is because on MIPS R10000 the number of branches decoded is only incremental by one in one

cycle. Sometimes there may be multiple floating point conditional branches verified in one cycle, and hence in

this situation MIPS R10000 doesn’t reflect the correct total number of branches resolved. On MIPS R12000,

however, the number of resolved conditional branches is incremented by the total number of conditional

branches resolved and hence more accurately reflects the true result. This is why MIPS R12000 does not

show the trend expected for the resolved conditional branch results.

2x Increase in Secondary Cache Size
Primary instruction and data cache misses, secondary data and instruction cache misses, and quadwords

written back to primary and secondary caches during the CATIA SolidE update test are summarized in

Table 7.

R10000 250 MHz, R12000 300 MHz,
1MB secondary cache 2MB secondary cache

Primary instruction cache misses 38.337E6 37.337E6

Primary data cache misses 36.681E6 35.663E6

Quadwords written back from 20.848E3 20.246E3

primary data cache

Secondary instruction cache misses 2.557E6 1.398E6

Secondary data cache misses 8.772E6 7.381E6

Quadwords written back from 15.107E3 8.822E3

scache

Table 7. Summary of Primary and Secondary Data and Instruction Cache Misses, as well as
Quadwords Written Back from Primary and Secondary Cache During CATIA

SolidE Update Test for Both MIPS R10000 and MIPS R12000

As would be expected, doubling the secondary cache should, in most situations, yield a noticeable reduction

in secondary misses since it is more likely that requested data will be located in secondary cache. The results

in Table 7 clearly demonstrate this for both secondary instruction and data caches. The reduction in secondary

instruction cache misses compared with the reduction in secondary data cache misses, however, will clearly

be very dependent on both the specific section of code along with any associated data.

As mentioned above, quadwords written back from scache represent the data transferred from secondary

cache to main memory. Clearly given a noticeable reduction in the number of secondary cache misses, a corres-

ponding reduction in the amount of data being written back to main memory is also likely, although it isn’t

guaranteed. The results in Table 7 show a significant reduction in quadwords written back from secondary

cache. Since this reduction is noticeably higher than the reduction in secondary cache misses, it’s likely that

other improvements in MIPS R12000 over MIPS R10000, such as the relaxed data cache set locking

described above, may also be influencing this result.

To place the significance of the OCTANE secondary cache size improvements in perspective, both primary and

secondary cache results are included in Table 7. Given that the cost in terms of time spent waiting for data as

a result of a secondary cache miss is between five and 10 times greater compared with a primary cache miss,

it is easy to see why a reduction in secondary cache misses is significant in terms of application performance.

Figures 14a and 14b show the measured secondary cache misses over the complete duration of the SolidE

Update test on both MIPS R10000 and MIPS R12000, respectively.

Figure 14a. Observed Secondary Cache Misses Seen on MIPS R10000 During
CATIA SolidE Update Test.

Figure 14b. Observed Secondary Cache Misses Seen on MIPS R12000 During
CATIA SolidE Update Test

8000

10000

6000

4000

2000

0

S
ec

on
da

ry
 C

ac
he

 M
is

se
s

3 4 5 61 20

1 x 109 Cycles

8000

10000

6000

4000

2000

0

S
ec

on
da

ry
 C

ac
he

 M
is

se
s

3 4 5 61 20

1 x 108 Cycles

Although it’s perhaps slightly difficult to see from the raw data, Figures 14a and 14b show the average value

for secondary cache misses for MIPS R12000 are slightly lower compared with those of MIPS R10000. This

concurs with the overall results presented in Table 7 above and the net effect of this is an improvement in

application performance.

5. Summary—OCTANE on the Competitive Horizon
The previous section demonstrated the benefit to the end user through application performance of architec-

tural improvements in both MIPS R12000 and OCTANE. In isolation, however, such information doesn’t

place these improvements into context, since it leaves the question of competitive positioning unanswered.

This section aims to address this by comparing the performance of OCTANE with the MIPS R12000 micro-

processor to current and recently announced competitive systems.

Figure 15 shows the peak and base SPECint95 results for the OCTANE with MIPS R12000 along with the

recently announced competitive processors and platforms from Sun, IBM, and HP, including the 450 MHz

UltraSPARC II and the HP PA-8500. Likewise, Figure 16 shows the peak and base SPECfp95 results for the

same platforms.

Figure 15. Comparison of MIPS R12000 SPECint95 Results with Competitive Systems

Sun
UltraSPARC II

450 MHz

IBM RS/6000
43P-150
375 MHz

IBM RS/6000
43P-260
200 MHz

HP C360
 PA-8500
367 MHz

Intel Pentium
II 450 MHz
SE440BX

OCTANE
R12000
300 MHz

19.6

14.5 15.1

SPECint_base95 SPECint95

12.5 13.1

24.4
26.0

17.2 17.2 16.3 17.3

Figure 16. Comparison of R12000 SPECint95 Results with Competitive Systems

Clearly the integer performance demonstrated by both the Sun UltraSPARC II 450 MHz and, even more so, the

HP PA-8500 367 MHz at first sight appear impressive. The SPECint95 baseline results for the UltraSPARC II

450 MHz are not known at the time of writing, however [7]; as the baseline SPECint95 results for the

UltraSPARC II 360 MHz show (see Figure 2), it’s likely that there is a significant gain through aggressive

compiler optimizations. As a consequence, although MIPS R12000 appears to be behind the UltraSPARC II

450 MHz in integer performance, in situations where compiler optimizations yield little improvement, as is

often the case with many operations in large applications, it is clearly well positioned to provide strong

competitive performance.

Compared with both the Sun and HP microprocessors, it should also be appreciated that the SPECint95 tests

typically sit very comfortably in cache. This is rarely the case with large applications, such as CATIA.

Consequently, the SPECfp95 results may present a better indication of how the performance of how all

microprocessors will be affected when secondary cache misses become more significant, thus forcing more

accesses to main memory. Clearly, the SPECfp95 results show that MIPS R12000 performance is very well

positioned against all platforms.

As a further illustration of this point, Tables 8a, b, and c compare the increase in SPECint95 and SPECfp95

among MIPS R12000 300 MHz, UltraSPARC II 450 MHz, and the PA-8500 microprocessors with previous-

generation microprocessors in each case.

Clock Rate SPECint95 SPECfp95
MIPS R10000 250 MHz 13.6 20.3

MIPS R12000 300 MHz 17.3 27.5

Increase 20% 27% 35%

Table 8a. Summary of SPECint95 and SPECfp95 Results for MIPS R12000 Relative to MIPS R10000

Sun
UltraSPARC II

450 MHz

IBM RS/6000
43P-150
375 MHz

IBM RS/6000
43P-260
200 MHz

HP C360
PA-8500
367 MHz

Intel Pentium
II 450 MHz
SE440BX

OCTANE
R12000
300 MHz

27.1

9.76 10.1

SPECfp_base95 SPECfp95

27.6
30.1

26.0
28.1

11.8
12.9

26.1
27.5

Clock Rate SPECint95 SPECfp95
Sun UltraSPARC II 360 MHz 16.1 23.5

Sun UltraSPARC II 450 MHz 19.6 27.1

Increase 25% 22% 15%

Table 8b. Summary of SPECint95 and SPECfp95 Results for UltraSPARC II 450 MHz Relative to
UltraSPARC II 360 MHz Microprocessor

Clock Rate SPECint95 SPECfp95
HP PA-8200 240 MHz 17.3 25.4

HP PA-8500 367 MHz 26.0 28.1

Increase 53% 50% 11%

Table 8c. Summary of SPECint95 and SPECfp95 Results for PA-8500 Relative
PA-8200 Microprocessor

Clearly these results demonstrate that MIPS R12000 is the only microprocessor to demonstrate a speed up

higher than clock rate when compared with the previous-generation processors on both SPECint95 and

SPECfp95 results.

The floating point increase of the HP C360 compared with the HP C240 can only be described as disappoint-

ing. When announced, the PA-8500 quoted SPECfp95 performance on the order of 40-60 [8]; however, the

C-class architecture is clearly a major limitation. This probably arises because, as mentioned above, the

SPECfp95 tests cause a significantly number of cache misses compared with the SPECint95 tests and the

resulting accesses to main memory amplify limitations in the C-class architecture. Secondary cache misses,

however, frequently occur when running large applications. The overall improvement in application perfor-

mance offered by the C360 PA-8500 360 MHz compared with the C240 PA-8200 240 MHz, therefore, is

likely to lie somewhere between the improvements seen for the SPECint95 and SPECfp95.

Another factor affecting the improvement between the HP C240 and HP C360 is that the PA-8500 micropro-

cessor includes 1.5Mb of on-chip single-level cache compared with 4MB off-chip single-level cache on the

PA-8200 microprocessor. Clearly for many application codes this will yield an increase in the number of

cache misses; however, in fairness to the PA-8500 microprocessor, it does incorporate modifications to com-

pensate. The latency of fetching data from cache in the PA-8500 has been significantly reduced compared

with the PA-8200 and the cache has also been changed from direct mapping to four-way set associative,

which will typically yield a noticeable increase in hit rates.

Like the HP C240 though, the HP C360 again clearly benefits from aggressive compiler optimization.

Figure 17 clearly demonstrates this by showing the ratio of peak-to-base SPECfp95 results across all tests

and shows large similarities to the data presented in Figure 4.

Figure 17. Ratio of Peak/Base SPECfp95 Results Across All Tests for HP PA-8500 Microprocessor

As previously discussed in the introduction, the IBM Power3 200 MHz microprocessor in the R/S6000 43P-

260 system presents strong competition for MIPS R10000 250 MHz in OCTANE. With MIPS R12000,

however, the SPEC results shown in Figures 13 and 14 clearly demonstrate that the advantage is severely

eroded, if not eradicated. What was previously competitive integer performance is now noticeably lagging,

and what was once a significant floating point lead is now a marginal advantage.

Some of the features of the Power3 design are very similar to those of MIPS R10000 and MIPS R12000,

although MIPS R10000 was first introduced into the Indigo2 and OCTANE systems over two years prior to

the 43P-260 being released. An example of such features [9], is that the Power3 can fetch and decode up to

four instructions in one cycle. Also, like both MIPS R10000 and MIPS R12000, it uses register renaming and

out-of-order execution; however, its branch prediction model is different in that it separates instructions that

generate branch conditions from instructions that change program flow. This allows branch conditions to be

generated in advance although the benefit will clearly be very dependent on the section of code executing.

Part of the Power3’s floating point performance can be explained because it allows up to eight instructions

to begin execution in one cycle: two floating point instructions, two load/store instructions, two single-cycle

integer instructions, a multiple-cycle integer instruction, and a branch instruction. Compared with the five

that can be issued in one cycle on MIPS R12000 (see Section 2.1), this is certainly likely to contribute to the

Power3’s slight advantage in the SPECfp95 results. Its interesting to note, however, that to the user the

advantage is not that significant since MIPS R12000 is able to demonstrate SPECfp95 results within 10% of

the Power3’s peak result. When the benefits of aggressive optimization are removed, to reveal perhaps a

more typical performance of a microprocessor, the Power3’s advantage is nearly cut in half to less than 6%.

Clearly applications can be compiled and optimized to take advantage of such architectural features; how-

ever, typically improvements will be diluted by other factors such as an increase in the integer component of

code, where MIPS R12000 actually demonstrates an advantage, along with the effects of memory latency, etc.

In summary, therefore, the SPECint95 and SPECfp95 results demonstrate that MIPS R12000 is very well posi-

tioned against all current competitive systems and microprocessors. Even compared with extreme cases such

as the integer performance of HP’s PA-8500 367 MHz or the floating point performance of IBM’s Power3

200 MHz, the balanced architecture of MIPS R12000 300 MHz delivers strong overall performance. When

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2c

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
plu

12
5.

tu
rb

3d

14
1.

ap
si

14
5.

fp
pp

p

14
6.

wav
e5

1.0

1.7

1.0 1.0 1.0 1.01.0

1.2

1.0 1.0

© 1999 Silicon Graphics, Inc. All rights reserved. Specifications subject to change without notice. Silicon Graphics and Indigo are registered trademarks, and OCTANE, Indigo2, Indigo2 IMPACT, and the Silicon Graphics logo are trademarks, of Silicon Graphics, Inc. MIPS,
R10000, and R12000 are registered trademarks of MIPS Technologies, Inc. UNIX is a registered trademark in the U.S. and other countries, licensed exclusively through X/Open Company Limited. All other trademarks mentioned herein are the property of their
respective owners.
2232 (2/99)

Corporate Office
2011 N. Shoreline Boulevard
Mountain View, CA 94043
(650) 960-1980
www.sgi.com

U.S. 1(800) 800-7441
Europe (44) 118-925.75.00
Asia Pacific (81) 3-54.88.18.11
Latin America 1(650) 933.46.37

Canada 1(905) 625-4747
Australia/New Zealand (61) 2.9879.95.00
SAARC/India (91) 11.621.13.55
Sub-Saharan Africa (27) 11.884.41.47

combined with OCTANE system architecture this yields significant improvements in application performance

relative to MIPS R10000 250 MHz and firmly places OCTANE among the performance leaders in current

UNIX® systems.

This paper has also demonstrated how the MIPS R12000 microprocessor and OCTANE system architecture

improvements yield benefits in terms of application performance. Moving forward, OCTANE will continue

to incorporate further microprocessor developments, such as MIPS R14000®, along with other system improve-

ments, such as new graphics hardware. In the same way as has been shown in this paper, these improvements

will result in application performance benefits, which are clearly of direct benefit to system users; however,

since the improvements will be incorporated into existing hardware, they also protect current investment,

yielding noticeable cost savings.

6. Acknowledgments
Any piece of work requires the help of many people. To this end I thank the following people for their

contributions: John Schimpf, Kenneth Yeager, Keith Jaslow, Gary Walters, Eric Miller, Alexander Poulos, and

Rob Jackson, all of Silicon Graphics, as well as Roberta Waterworth of DaimlerChrysler corporation.

7. References
1. “OCTANE Technical Report,” Silicon Graphics, Inc.

2. The published results of the SPEC organization are located at www.spec.org.

3. “The MIPS R10000 Superscalar Microprocessor,” Kenneth C. Yeager, IEEE Micro, April 1996.

4. “200-MHz Superscalar RISC Microprocessor,” Nader Vasseghi, Kenneth Yeager, Egino Sarto, and

Mahdi Seddighnezhad, IEEE Journal of Solid-State Circuits, Vol. 31, No. 11, November 1996.

5. “High-Performance Computer Architecture,” 3rd Edition. Harold S. Stone, Addison-Wesley, 1993.

6. “Computer Architecture Single and Parallel Systems,” Mehdi R. Zargham, Prentice Hall, 1996.

7. “Sun Announces 450 MHz and 400 MHz UltraSPAR-II Microprocessors,” Sun Microsystems,

Nov. 2, 1998.

8. “PA-8500’s 1.5M Cache Aids Performance,” Linely Gwennap Microprocessor Report, Nov. 17, 1997.

9. “IBM’s Power3 to Replace P2SC,” Peter Song, Microprocessor Report, Nov. 17, 1997.

