

Introduction

1.0 Introduction

Silicon Graphics, the recognized leader in developing sophisticated visual computing
systems, is dedicated to advancing three-dimensional computer graphics technologies.
After more than a decade, hardware and software solutions from Silicon Graphics con-
tinue to redefine the state of the art in visual computing for creative professionals, scien-
tists, and engineers. InfiniteReality is the latest offering in the most advanced line of
binary-compatible visualization systems. It establishes a new high-water mark for 3D
geometry processing performance and concurrently processes 3D geometry, imagery,
and video data in real time — making it a true visualization pipeline capable of process-
ing a broad range of visual data types.

1.1 System Configurations

InfiniteReality systems are packaged in both compact deskside units for optimal price/
performance and larger rack units for maximum performance and expansion. They are
available in the following configurations:

• Onyx® – Multiprocessor Graphics Workstation

Onyx systems combine the InfiniteReality graphics system with the shared-memory
multiprocessing capability of the POWERpath-2™ RISC system architecture. Onyx
systems are available with two to 24 MIPS® R4400® or MIPS R10000™ proces-
sors, in both deskside (Figure 1) and rack enclosures (Figure 2).

Figure 1. InfiniteReality Deskside System Block Diagram (includes Sirius Video option)

2 to 4 R4400 or R10000 CPUs
64MB to 2GB System Memory

POWERpath-2 System Bus

Geometry Engine (GE12)
Raster Manager (RM6)

POWERchannel-2

Sirius
Video Option

Video In
Video In/Out

Display Generator (DG4)
InfiniteReality Technical Report 1

Introduction

Figure 2. InfiniteReality Rack System Block Diagram

• i-Station™ – Single Processor Graphics Workstation

i-Station combines the powerful graphics of InfiniteReality with the shared-memory
multiprocessing capability of the POWERpath-2 RISC system architecture. i-Station
is a single processor system that utilizes either the MIPS R4400 processor or the
more powerful MIPS R10000 processor and is available in a compact deskside
enclosure (Figure 3).

Figure 3. i-Station System Block Diagram (includes Sirius Video option)

64MB to 16GB
System Memory

2 to 24 R4400 or R10000 CPUs

POWERpath-2 System Bus

Geometry
Engine
(GE12)

Raster
Manager
(RM6)

Multi-Channel
Display Generator
(option) (DG4-8)

POWERchannel-2

Computer Systems

SiliconGraphics

2 or 8
Video Outputs

1 R4400 or R10000 CPU
64MB to 2GB System Memory

POWERpath-2 System Bus

Geometry Engine (GE12)
Raster Manager (RM6)

POWERchannel-2

Sirius
Video Option

Video In
Video In/Out

Display Generator (DG4)
2 InfiniteReality Technical Report

Introduction

• POWER CHALLENGE™ GR – Supercomputing Server

POWER CHALLENGE, the premier supercomputing system from Silicon Graphics,
is based on the POWERpath-2 RISC system architecture. POWER CHALLENGE
GR is designed to operate with the InfiniteReality subsystem, giving you supercom-
puting performance and the world’s most powerful visualization system. This rack
system can use up to 24 MIPS R10000 processors.

I/O devices connect to these systems through the Silicon Graphics® High-speed I/O bus
(HIO bus) or through an industry-standard VME64 bus. Options are available to connect
high-bandwidth SCSI-2 disk array subsystems, FDDI, ATM, and high-speed point-to-
point interfaces (HIPPI) into the I/O subsystem. Multiple I/O buses can be used in all
configurations.

1.2 About this Document

This document serves as a detailed report on InfiniteReality subsystems. For in-
depth technical information on the CPU, memory, and I/O subsystems of the Onyx
and POWER CHALLENGE families, see the CHALLENGE® and POWER
CHALLENGE technical reports. These reports are available through local Silicon
Graphics sales offices worldwide.
InfiniteReality Technical Report 3

Introduction

(Intentionally left blank)
4 InfiniteReality Technical Report

InfiniteReality

2.0 InfiniteReality

InfiniteReality is specifically designed to concurrently process 3D geometry, imagery
and video data at real-time rates, making it much more than a traditional 3D graphics
processing system. It is a true visualization pipeline capable of processing a broad range
of visual data types. The new advanced feature set in InfiniteReality combines its raw
processing power and I/O speeds, making it the most powerful computer graphics sys-
tem in the world. Compatibility between InfiniteReality and other systems is assured
because the hardware is accessed through OpenGL, developed by Silicon Graphics and
now accepted as the world standard for creating 3D graphics applications.

As in its predecessor RealityEngine2™, the InfiniteReality visualization subsystem
comprises three unique boards: Geometry Engine, the RM (Raster Manager), and the
DG (Display Generator). Geometry Engine provides the interface to the compute sub-
system through the POWERchannel-2 board and is responsible for the preliminary geo-
metric transformations (translation, rotation, scale) and lighting calculations for three-
dimensional data. It also performs image processing functions (convolution, histogram
equalization, orthorectification, and more) on two-dimensional images. The Raster
Manager takes the results from Geometry Engine and scan-converts the data into a digi-
tal image. The RM board performs various pixel operations, including Z-buffer testing,
color and transparency blending, texture mapping, and multisample anti-aliasing. The
RM has both texture memory for storing textures (images) and frame buffer memory for
performing pixel operations. Finally, the DG board takes the output from the RM board
and converts the digital data into an analog format for driving a display. A base DG can
be programmed to display different portions of the RM frame buffer to its two display
channels. One of these display channels can be converted into a composite video mode
and connected directly to a video tape recorder. Optional configurations of the DG
board permit up to eight output display channels.

InfiniteReality employs an entirely new system architecture. Thirteen unique ASIC
(Application Specific Integrated Circuit) designs comprising 19 million transistors were
developed using the latest in semiconductor design and fabrication technologies. Sev-
eral designs are used multiple times in each pipeline. A maximally configured pipeline
contains 151 ASICS with more than 260M transistors. In general terms, the processors
make up stages in a pipeline. Within each stage additional parallelism is obtained by
employing SIMD and MIMD techniques.
InfiniteReality Technical Report 5

InfiniteReality

(Intentionally left blank)
6 InfiniteReality Technical Report

OpenGL

3.0 OpenGL

The native graphics programming interface for InfiniteReality is OpenGL, the premier
environment for developing high-performance 2D graphics, 3D graphics, imaging, and
video applications. It is designed to be independent of operating systems and window
systems, and is supported on virtually all workstations and personal computers available
in the industry today.

Standard OpenGL provides access to a rich set of graphics capabilities, including
transformations, lighting, atmospheric effects, texturing, anti-aliasing, hidden surface
removal, blending, and pixel processing, among many others. On InfiniteReality, OpenGL
adds more than 30 special functions for applications in visual simulation, imaging, vol-
ume rendering, advanced industrial design, film and video effects, and animation.

OpenGL is a direct descendant of the original IRIS Graphics Library™ (IRIS GL™).
On InfiniteReality, IRIS GL is implemented as a library layered on top of OpenGL.
However, the special features and full performance of InfiniteReality are available only
through OpenGL.
InfiniteReality Technical Report 7

OpenGL

(Intentionally left blank)
8 InfiniteReality Technical Report

Geometry Subsystem

4.0 Geometry Subsystem

The first stage in the InfiniteReality system is the geometry subsystem. It resides on the
Geometry Engine (GE) board. The primary functions of the geometry subsystem are
handling data transfer to and from the host, performing OpenGL command parsing, and
executing geometry and pixel processing commands. The geometry subsystem has been
substantially modified compared to over the design used in RealityEngine2: for the first
time, the system provides dedicated hardware acceleration for display list processing;
the I/O rate to and from the host as well as internally within the subsystem is much
higher; floating point processing power was increased substantially. Additionally, the
geometry subsystem for InfiniteReality was designed to support the OpenGL API. Large
FIFOs are provided to ensure that the geometry subsystem can continue executing with-
out stalling, regardless of the state of other stages within the pipeline.

4.1 Geometry Engine

Geometry Engine processors are custom-designed by Silicon Graphics. Four Geometry
Engine processors are employed in MIMD fashion within the geometry subsystem.
Each Geometry Engine processor contains three separate floating-point cores that exe-
cute in SIMD. Each core contains a floating-point ALU and multiplier.

Geometry Engine processors do both geometry (per vertex) and pixel processing.
Geometry processing includes vertex transformations, lighting, clipping, and projection
to screen space. Pixel processing includes many common image processing operators,
such as convolution, histograms, scale and bias, and lookup tables. Pixel operations can
be applied to standard pixels, textures, or video.
InfiniteReality Technical Report 9

Geometry Subsystem

(Intentionally left blank)
10 InfiniteReality Technical Report

Raster Subsystem

5.0 Raster Subsystem

The raster subsystem, residing on the Raster Manager boards, has most of the graphics
system’s custom VLSI processors and memory. Triangle, point, and line data received
by the Raster Manager from the geometry subsystem must be scan-converted into pixel
data, then processed into the frame buffer before a finished rendering is handed to the
display subsystem for generation of displayable video signals.

By using extensive parallelism in most stages, the raster subsystem creates a system that
performs anti-aliasing, texture mapping, and image processing functions without en-
countering bottlenecks. The method of performing anti-aliasing is called multisampling.
With multisampling, images are rendered into a frame buffer with a higher effective res-
olution than that of the displayable frame buffer; the number of subsamples computed
for each pixel determines how much higher. For example, if each pixel has eight sub-
samples, positioned at eight of the 64 possible subpixel locations, then the effective
resolution is eight-times the displayable resolution.

When the image has been rendered into these subsamples, all samples that belong to
each pixel are blended together to determine pixel colors. Image memory is interleaved
among parallel processors so that adjacent pixels are always handled by different pro-
cessors. Thus, each polygon can have multiple processors operating on it in parallel.

5.1 Texture Processing

For each pixel, scan conversion produces texture coordinate data (S, T, R, W) which are
sent to a dedicated texture processing unit. This hardware performs perspective correc-
tion on texture coordinates, and determines the detail level for MIPmapping, producing
addresses for the relevant area of texture memory. Texture data (texels) are stored in one
of several formats, depending on the number and precision of color and transparency
components desired. Texels in the area covered by a pixel are read and used in one of
several user-definable texture filtering calculations. The resulting color value is sent to
pixel processors to rendezvous with the pre-texture color and depth values produced by
the main scan converter.

5.2 Pixel Processing

At the next stage of rendering, texture color is used to modify the pre-texture primitive
color according to a texture environment equation. Here is where texture can be used to
decal, modulate, or blend with the underlying primitive color. The amount of fog at the
current pixel is calculated from the depth value, and this fog color is blended with the
textured color to produce the final color and transparency.

Pixel processors support 10-bit RGB and 12-bit RGBA components for pixels, giving
you the option of selecting from more than 68 billion colors for any given object or ver-
tex. 16-bit luminance-alpha or color index formats are also supported. This accurate
color information is critical for image processing applications and is supported through
Silicon Graphics ImageVision Library, as well as OpenGL.
InfiniteReality Technical Report 11

Raster Subsystem

The raster subsystem supports one to four Raster Manager boards. More boards increase
the scale of both pixel fill performance and frame buffer resolution. With one RM board
installed, InfiniteReality systems support the new ultra-high-resolution standard of
1920 x 1200 pixels non-interlaced and the full specification for HDTV, offering inter-
laced displays that use either the 1250/50 (1920 x 1152 display resolution) or 1125/60
format (1920 x 1035 resolution).
12 InfiniteReality Technical Report

Display Subsystem

6.0 Display Subsystem

The InfiniteReality video display subsystem takes rendered images from the raster sub-
system digital frame buffer and processes pixels through digital-to-analog converters
(DACs) to generate an analog pixel stream suitable for display on a high-resolution
RGB video monitor. The display subsystem supports programmable pixel timings to
allow the system to drive displays with a wide variety of resolutions, refresh rates, and
interlace/non-interlace characteristics.

The standard configuration of InfiniteReality provides two or eight independent video
channels. The second video channel can serve as a standard RGB video channel, as a
composite, or as an S-video encoder. Flexible, built-in scan-conversion allows the video
encoder to process any rectangular area of any video channel, up to and including the
full screen. Convenient letterboxing lets the composite encoder work undistorted on
video formats with aspect ratios other than the 3:4 aspect ratio of NTSC or PAL.

Advanced hardware in the video display subsystem performs real-time video resamp-
ling, giving you powerful new methods of guaranteeing scene update-rates and using
frame buffer memory efficiently, as well as allowing full-screen recording to standard
VCRs. Compatibility with a wide variety of video equipment such as projectors and
recorders, is provided by composite sync-on-green and separate horizontal and vertical
video signals.

Composite and S-video encoder outputs are for industrial or monitoring purposes only,
and are not intended for broadcast television use. For broadcast-quality composite video, a
video channel may be configured as RS-170 or Euro 625 resolution and sent through an
external, broadcast-quality encoder. When CCIR601 or broadcast-quality component
video is desired, the Sirius Video option may be used. In InfiniteReality, the Sirius Video
option can access frame buffer memory in the same way as any other video channel.

The display system provides standard video support for the US HDTV standard
(SMPTE 274M, 1920 x 1080 pixels), both interlaced and non-interlaced, at 60Hz.
HDTV trilevel sync is provided for easy recording of HDTV signals without external
signal conditioning equipment. Additionally, a special 72Hz non-interlaced version of
this format is provided for flicker-free viewing in ambient office lighting environments.
The 1920 x 1080 pixel format is supported on the entry-level, 1-RM configuration of
InfiniteReality. This video flexibility is supported by the standard system monitor,
which is a high-resolution multisync display capable of displaying any video signal
from VGA (640 x 480) up to the 1920 x 1080 format.

Video features of InfiniteReality are easy to configure, using the new Video Format
Compiler and Video Format Combiner.
InfiniteReality Technical Report 13

Display Subsystem

(Intentionally left blank)
14 InfiniteReality Technical Report

Graphics Features and Capabilities

7.0 Graphics Features and Capabilities

7.1 Resolution

InfiniteReality supports a range of resolutions. The base system includes one Raster
Manager board and provides 2.62 million pixels. 2-RM and 4-RM systems offer 5.24
million and 10.48 million pixels, respectively. For example, a 1-RM system can drive a
1920 x 1080 HDTV display or two 1280 x 1024 displays. Alternately, a 2-RM system
can drive six 960 x 720 displays or one 1280 x 1024 plus six 800 x 600 displays.

The minimum amount of frame buffer memory you can allocate per pixel is 256 bits,
which supports quad-buffered stereo with up to 12-bit RGBA and a 23-bit depth buffer,
or 4-sample antialiasing at 10-bit RGB with a 23-bit precision depth buffer. Per-pixel
memory can be doubled or quadrupled, with a corresponding reduction to one-half or
one-quarter of available pixels.

7.2 Graphics Primitives

The general-purpose InfiniteReality graphics pipeline supports a wide range of graphics
primitives for constructing and rendering real-time 3D objects. The basic primitives are
polygons, vectors, points, and parametric polynomial surfaces (such as NURBS and
Bezier patches). These primitives may be rendered with color, transparency, lighting,
texture, and various surface properties.

For complex, contiguous surfaces, such as terrain, polygons may be meshed into strips
with common vertices. This reduces system transformation demands and efficiently uses
the inherent parallelism in the InfiniteReality pipeline.

7.3 Transformations

OpenGL supports two mechanisms for delivering data to the rendering pipeline: imme-
diate mode and display list mode. In immediate mode, transformations, geometry, as
well as other data are delivered to the rendering pipeline directly from the application by
calling a series of OpenGL routines. For example:

glBegin(GL_TRIANGLE_STRIP);

glVertex3fv(vertex)

...

glEnd()

Immediate mode has maximum flexibility because the application can recompute data
as it sends it.

Additionally, the application can compile immediate mode commands into display lists,
stored as part of the OpenGL rendering state. The application can execute display lists
wherever it normally uses immediate mode commands. The advantages of display lists
InfiniteReality Technical Report 15

Graphics Features and Capabilities

are that rendering data is stored in an efficient representation and can be issued to the
rendering pipeline with maximum performance. The disadvantages are that extra stor-
age is required for the rendering data; and some small amount of overhead is incurred in
executing the list, so lists are not suitable for small amounts of data (a single triangle,
for example). Finally, display lists are usually inappropriate for dynamic data because
they need to be recompiled whenever data changes. While the basic character of display
modes and immediate modes are the same across the Silicon Graphics product line,
some features and characteristics specific to InfiniteReality are worth noting.

7.3.1 Immediate Mode

Rendering on Silicon Graphics platforms is typically split into a three-stage pipeline:

• Data delivery: host to rendering pipeline

• Geometric processing

• Rasterization

Performance bottlenecks can occur in any of the three stages. With the improvements in
the geometry and raster processing power of InfiniteReality, applications may find that
the performance bottleneck is in delivering data to the rendering pipeline. Performance
may be improved by tuning the algorithms through which the application traverses its
data and by using suitable OpenGL commands for delivering data to the pipeline. For
example, rather than using floating-point data types for colors, normals, and texture
coordinates, it may be more efficient to use short or byte integer data types, reducing the
bandwidth requirement to the host memory subsystem and to the rendering pipeline.

InfiniteReality also supports vertex arrays, which allow the application to issue primi-
tive data to the geometry engines in larger transfers and with lower overhead compared
to the standard “fine-grain” OpenGL interface. InfiniteReality extends the original
OpenGL vertex array extension with support for packed vertex arrays, helping vertex
arrays to be dispatched more efficiently while permitting tight packing of vertex coordi-
nates and associated attributes.

7.3.2 Display Lists

Display lists are an excellent way of ensuring that data is being efficiently delivered to a
rendering pipeline. InfiniteReality supports two new features for substantially improved
display list performance over immediate mode performance.

The first feature is a large display list storage cache built into the rendering pipeline.
This cache is approximately 14MB and can deliver data to the geometry subsystem at
more than 300MB/second with very low latency. The cache is automatically managed
by a combination of Performer™ and the OpenGL library. Display lists are selected for
placement in the cache based on their size and their content. For example, very short
lists will not be put in the cache since the overhead for executing them would outweigh
the benefit of placing them in the cache. Lists containing a complex hierarchy will be
excluded from the cache as the hierarchy traversal is too complex to deal with directly in
the graphics pipeline.
16 InfiniteReality Technical Report

Graphics Features and Capabilities

The second display list feature allows display lists to be stored in host memory, but
accessed directly by the graphics pipeline. As display lists are compiled they are stored
in host memory in a representation suitable for direct interpretation by Geometry
Engine. When display lists are executed, the data does not need to be processed by the
host CPU nor does it pass through any of the host CPU system caches. On Onyx sys-
tems the bandwidth for these direct access display lists is better than 175MB/sec.

7.3.3 Primitive Processing

InfiniteReality has features for helping applications make better use of the Geometry
Engine processors. One feature is the ability to perform per-vertex processing, such as
viewing and lighting computations on multiple primitives in one group. When primitives
such as triangle strips are issued by the application, the vertices are accumulated and
processed in batches. Geometry Engine processors and associated firmware are opti-
mized for a particular batch length, usually around 6-12 vertices. In previous architec-
tures, there could be only one primitive in a batch and a single primitive could span
multiple batches. This meant that there was an optimal primitive size, with some perfor-
mance degradation occurring for primitives of shorter or longer lengths. Now, Infinite-
Reality can process multiple primitives within the same batch, so it does not incur those
performance degradations.

7.3.4 Sprites

Visual simulation applications frequently need to perform computationally intensive
viewing transformations for drawing sprite objects, such as trees, in which the object
rotates as the view changes. InfiniteReality provides a sprite OpenGL extension for per-
forming these complex calculations in the Geometry Engine processors, thus freeing up
the host processor for other computations.

7.4 Color

All OpenGL color and lighting models are supported within the InfiniteReality architec-
ture. Lighting operations are performed in floating point in the Geometry Engine pro-
cessors. Color rasterization operations are performed by the raster subsystem with 48-
bits per color value (12-bits each for R, G, B, and A). Color index operations are sup-
ported at up to 12-bits per index. Colors may be stored in the frame buffer memory in
visuals with as few as 16-bits or as many as 48-bits per color. More bits per color results
in greater color fidelity and dynamic range. Special luminance formats allow the display
and processing of monochrome images and textures with 16-bit components.

7.4.1 Shading

There is no penalty for smooth shading on objects rendered with InfiniteReality. The
Gouraud shading algorithm shades the surface of each polygon smoothly, using the cur-
rent lighting model. This gives you clean, nonfaceted rendering of complex objects in
real time, and may be combined with transparency and texture for even more advanced
rendering effects.
InfiniteReality Technical Report 17

Graphics Features and Capabilities

7.4.2 Color Blending

When multiple occulting surfaces have partial transparency, the raster subsystem can
also perform color blending between each set of surfaces, depending upon the Alpha
values associated with each pixel. These Alpha values commonly represent a degree
of translucency from zero to one and enable simulation of windows, cockpit canopies,
smoke, clouds, and other effects. To allow a wider choice of blending equations, a num-
ber of OpenGL blending extensions are supported.

7.4.3 Lighting

Hardware lighting capabilities enables the generation of more realistic-looking scenes.
Lighting, which is computed per vertex, works with other rendering capabilities, includ-
ing texture mapping, transparency, and Gouraud shading. All OpenGL lighting features
and operations are supported.

7.4.4 Advanced Lighting Model

For creating realistic lighting scenarios, lighting effects must have many different com-
ponents. Lights may be colored to allow for effects such as time-of-day lighting, where
the color of the light as well as the intensity changes over time. Objects being lighted
may be affected both directly and indirectly by light sources. The OpenGL lighting
model on InfiniteReality provides for these characteristics in such a way that objects
being lighted are affected by a combination of the components shown in Table 1.

The programmer uses OpenGL commands for setting up the current lighting model,
affecting all subsequent surfaces sent down the pipeline until the model is changed.
Effects of the components are combined to modify the color of each vertex sent to the
graphics pipeline. Lights change the surface color based upon the four components of
the current lighting model, the color of the light, and the set surface properties.

Lighting Model
Component Notes

Specular For highlights, and simulating shiny surfaces

Diffuse For broader, directional effects, and simulating rough surfaces

Ambient For environmental, nondirectional effects

Emissive For self-luminous surfaces, vectors, or points

Table 1. Lighting Model Components
18 InfiniteReality Technical Report

Graphics Features and Capabilities

7.4.5 Surface Properties

In addition to the four lighting model components, a shininess component may be set
for the current lighting model to handle different surface properties. This component
may be changed from object to object to allow for a variety of different surface types
in the environment. This property, in addition to light characteristics and surface color,
may be combined with texture mapping and transparency to give you the maximum
flexibility in defining surface reflectance characteristics.

7.4.6 Infinite Light Sources

Infinite light sources are assumed to be infinitely far from the surface they are illumi-
nating; thus, light “rays” from these sources are assumed to arrive in parallel at all the
surfaces affected.

7.4.7 Local Light Sources

Local light sources may exist close to the surface(s) they are illuminating; thus, the
angle between the light source and the normals of the various affected surfaces can
change dramatically from one surface to the next. Properties such as cutoff angle and
attenuation may be specified for each light.

Since angles from surface normals to the light source must be computed every frame for
each surface, local lights are far more computationally expensive than infinite lights and
should be used judiciously in real-time applications.

7.5 Transparency

Each vertex to be rendered may have a transparency component, Alpha, along with the
standard color components red, green, and blue. When Alpha is used to control the pixel
color, objects of varying transparency/translucency may be included in a rendered
scene. To insure that transparency is computed correctly and predictably, it is best to sort
transparent objects from front to back with respect to the eyepoint, then draw these
objects after all the nontransparent objects have been rendered.

7.6 Hidden Surface Removal

Current Silicon Graphics machines use a Z-buffering technique to remove hidden sur-
faces. The Z (depth) buffer gives high-quality hidden surface removal during rendering
without needing to sort the polygons. This process can thus be performed with few or no
programming considerations in the software that traverses and renders the database.

Silicon Graphics floating-point Z-buffer technique for InfiniteReality is advancing
the state of the art by offering more uniform resolution across the Z dimension.
InfiniteReality offers three options for Z-buffer precision: 23-bit, 16-bit compressed,
and 15-bit compressed. The Z-buffer exists as dedicated memory in the frame buffer
associated with each pixel. The first time a pixel is drawn, its Z-buffer value is set to the
InfiniteReality Technical Report 19

Graphics Features and Capabilities

Z of the primitive being drawn. Each time a subsequent attempt is made to set the color
of that pixel because a new polygon is covering it, the system checks to see if that
pixel’s Z-buffer value is further or closer than the Z value of the pixel being drawn. If
the new pixel is closer, its color value replaces the previous value in the
color buffer, and the Z-buffer is set to the new depth.

7.7 Anti-Aliasing

The high-performance anti-aliasing hardware of InfiniteReality continues the trend
started with the RealityEngine2 graphics architecture. For the highest available image
quality, memory and processors are put in the Raster Manager subsystem to give you
multisampled anti-aliasing without the usual performance penalties. This anti-aliasing
technique needs no data sorting and works with the Z-buffer for superior hidden surface
removal.

Subpixel information is retained for all vertices in the pipeline as they are transformed
and converted to raster primitives. Each primitive is computed with 8 x 8 subpixel accu-
racy. Thus, there are 64 possible subpixel locations within each pixel rendered. When
deciding how to color a pixel, the raster system samples each primitive at one, four, or
eight of the subpixel locations in each pixel it touches. It then calculates color and depth
information for the subpixels covered. This information is sent to the frame buffer where
Z-buffering is performed on each subpixel, and a final color for each pixel is formed from
the accumulated data from the set of subpixels within it.

In multisample anti-aliasing mode, Z information is kept for every subsample, giving
hidden-surface accuracy down to the subpixel level. When transparency is used, the
Alpha value is used to determine how much to blend the color of the closer pixel with
the color of the farther pixel at that same location in the subpixel grid.

7.7.1 Sample Memory

The number of anti-aliasing samples available depends upon the total amount of frame
buffer memory, the screen resolution, and the number of bits per image component
desired.
20 InfiniteReality Technical Report

Graphics Features and Capabilities

Table 2 shows some of the possible memory configurations.

One RM Provides Sufficient Memory For:

1 960 x 680 display 8 samples 12 bits/component for
RGBA

23-bit Z-buffer,
8-bit stencil

1 1280 x 1024 display 8 samples 10 bits/component for
RGB

23-bit Z-buffer,
1-bit stencil

2 1280 x 1024 displays 4 samples 10 bits/component for
RGBA

15-bit Z-buffer,
1-bit stencil

1 1920 x 1080 display 4 samples 10 bits/component for
RGB

15-bit Z-buffer,
1-bit stencil

Two RMs Provide Sufficient Memory For:

1 1280 x 1024 display 8 samples 12 bits/component for
RGBA

23-bit Z-buffer,
8-bit stencil

1 1600 x 1200 display or
1 1920 x 1080 display

8 samples 10 bits/component for
RGB

23-bit Z-buffer,
1-bit stencil

4 samples 12 bits/component for
RGBA

23-bit Z-buffer,
1-bit stencil

2 1920 x 1080 display 4 samples 10 bits/component for
RGB

15-bit Z-buffer,
1-bit stencil

Four RMs Provide Sufficient Memory For:

8 800 x 600 displays 8 samples 10 bits/component for
RGB

23-bit Z-buffer,
1-bit stencil

3 1280 x 1024 displays 8 samples 10 bits/component for
RGB

23-bit Z-buffer,
1-bit stencil

2 1920 x 1080 displays 8 samples 10 bits/component for
RGB

23-bit Z-buffer,
1-bit stencil

1 1920 x 1200 display 8 samples 12 bits/component for
RGBA

23-bit Z-buffer
8-bit stencil

Table 2. Anti-Aliasing Sample Memory Options
InfiniteReality Technical Report 21

Graphics Features and Capabilities

7.8 Texture/Image Mapping

Designed to display complex, texture-mapped scenes at real-time (60Hz) frame rates,
InfiniteReality keeps compatibility with earlier RealityEngine2 and POWERVision™
systems, while dramatically improving performance and texture capacity and adding
new features and functionality to texture mapping.

7.8.1 Texture Download

InfiniteReality downloads and draws textures simultaneously, allowing textures to be
updated on-the-fly. Synchronization, built into the hardware and software, prevents tex-
tures from being replaced until the system finishes with them and prevents a texture
being drawn until it is completely loaded. The maximum texture download rate is
176 MB/sec from host memory or 240 MB/sec from frame buffer memory. See Table 3.

7.8.2 Texture Formats

InfiniteReality supports three basic texture element (texel) sizes: 16-bit, 32-bit, and
48-bit, including 16-bit monochrome. Each size can represent several formats:

16-bit textures:

• Dual 4-bit Luminance with 4-bit Alpha

• Quad 4-bit Luminance, Intensity, or Alpha

• Dual 8-bit Luminance, Intensity, or Alpha

• 8-bit Luminance with 8-bit Alpha

• 12-bit Luminance, Intensity, or Alpha

• 12-bit Luminance with 4-bit Alpha

• 5-bit (each) RGB with 1-bit Alpha

• 4-bit (each) RGBA

• 16-bit Luminance, Intensity, or Alpha

Source 16 bit 32 bit 48 bit

Host Memory 76 MT/sec 44 MT/sec 22 MT/sec

Frame Buffer Memory 71 MT/sec 74 MT/sec 40 MT/sec

Table 3. Texture Rate for 512 x 512 Texture
22 InfiniteReality Technical Report

Graphics Features and Capabilities

32-bit textures:

• 16-bit Luminance with 16-bit Alpha

• 12-bit Luminance with 12-bit Alpha

• 8-bit (each) RGBA

• 10-bit (each) RGB with 2-bit Alpha

48-bit textures:

• 12-bit (each) RGB

• 12-bit (each) RGBA

The variety of formats allows you to trade off image quality against storage size and
rendering speed. 32-bit textures require twice the storage of 16-bit textures, while 48-bit
textures require four-times the storage of 16-bit textures. Generally, 16-bit textures ren-
der faster than 32-bit textures, and 32-bit textures render faster than 48-bit textures for a
given filtering mode.

Where vast amounts of low-resolution texture is required, you can use the texture select
feature. In this case four 4-bit textures or two 8-bit textures are packed into one 16-bit
texture. You may select which of the four (or two) textures are used at any given time.

7.8.3 Texture Filtering

One of the most powerful features of the InfiniteReality architecture is found in the vari-
ety of advanced two-dimensional and three-dimensional texture filtering techniques that
are supported. This variety allows you to choose the most appropriate filtering technique
for your application.

The filtering techniques comprise two different classes: MIPmapped and non-MIP-
mapped. The term MIPmapping is derived from the Latin phrase, multum in parvo,
which means “many things in a small space.” The MIPmapping process takes a texture
(image) to be used in a scene and generates a series of pre-filtered, lower-resolution ver-
sions of that texture. The appropriate level of the MIPmapped texture is then applied to
a polygon as required by the scene. This allows the texture to be minified without alias-
ing artifacts. Different MIPmapped filtering techniques are then available to calculate
the transitions between different MIPmap levels and between different texels (texture
elements) within a level. These filtering techniques include:

• Point sampled

• Linear interpolated

• Bilinear interpolated

• Trilinear interpolated

• Quadlinear interpolated (for 3D textures)

Non-MIPmapped textures require filtering only among the different texels within the
texture map. These filtering techniques include
InfiniteReality Technical Report 23

Graphics Features and Capabilities
• Point sampled (for 2D or 3D textures)

• Bilinear interpolated (for 2D textures)

• Trilinear interpolated (for 3D textures)

• Bicubic interpolated (for 2D textures)

InfiniteReality is designed to provide all of the filtering techniques listed above at full
texture processing performance levels, except for quadlinear interpolated MIPmapping
and bicubic interpolated filtering which operate at half the rate of the others. It is impor-
tant to recognize that trilinear interpolated non-MIPmapped 3D texture filtering is avail-
able at full texture processing performance levels. This represents a significant perfor-
mance improvement compared to RealityEngine2, which processed this filtering tech-
nique at one-half the peak performance level of other RealityEngine2 texture filters.

7.8.4 Global Texturing

An important and innovative new feature of InfiniteReality is Global Texturing. Global
texturing accelerates processing of terrain data mapped with satellite and aerial photo-
graphs. In RealityEngine2, traditional MIPmapping techniques were used to apply aerial
photographs to terrain meshes. Large geographic areas were covered by tiling a number
of smaller MIPmaps together across the terrain area. This technique, though powerful,
required a large number of textures and a significant amount of texture memory. Unused
texture tiles were stored in main memory and downloaded into the RealityEngine2 tex-
ture buffer when required. In this case, textures were either stored in system memory or
texture memory, but they could not be split between the two.

In InfiniteReality, global texturing allows you to define a single MIPmap that is much
larger than that which can be stored in texture memory. Only the parts of the MIPmap
that are actually used in rendering an image are stored in texture memory; the rest is
stored in main memory or on disk. As the point of view moves, the portion of the MIP-
map that is stored in memory is updated to reflect the new point of view.

7.8.5 Modulation and Decals

Each texture can be treated in two ways when applied to a polygon. When operating as a
decal, the color of the texture replaces inherent color to the polygon. During modula-
tion, the texture color is blended with the color and surface properties and thus looks
different on various surfaces.

7.8.6 Texture/Image Memory

Each RM can have either 16MB or 64MB of texture memory. For non-MIPmapped tex-
tures this means that the texture memory can hold 8 million or 32 million 16-bit texels
respectively. MIPmapped textures require extra storage for the prefiltered lower levels
of detail, amounting to one-third the size of the finest level of detail.
24 InfiniteReality Technical Report

Graphics Features and Capabilities
The largest 16-bit texture map that fits into InfiniteReality texture memory is shown in
Table 4:

Table 5 shows the number of 16-bit textures that can be stored in 16MB of texture mem-
ory. To convert to the number of 32-bit or 48-bit textures, divide the numbers in the last
two columns by 2 or 4, respectively.

Texture
Memory

2D Non-
MIPmap

2D
MIPmap

2D
Bicubic 3D 3D MIPmap

16MB 2048 x 2048 2048 x 1024 4096 x 2048 256 x 256 x 128 128 x 28 x 128

64MB 4096 x 4096 4096 x 2048 8192 x 4096 512 x 256 x 56 256 x 256 x 128

Table 4. Largest 16-Bit Texture Maps

Texture
Size

Total
Number
of Texels

Total
Texels
with
MIPmaps

Number of 16-Bit
MIPmapped
textures in 16MB
of texture memory

Number of 16-Bit
Non-MIPmapped
textures in 16MB
of texture memory

2048 x 2048 4,194,304 5,592,436 0 2

1024 x 1024 1,048,576 1,398,146 4 8

512 x 512 262,144 349,570 22 32

256 x 256 65,536 87,426 94 128

128 x 128 16,384 21,890 382 512

64 x 64 4,096 5,506 1,522 2048

32 x 32 1,024 1,410 5,948 8192

16 x 16 256 386 21,732 32,784

Table 5. 2D Texture Memory Sizes and Quantities
InfiniteReality Technical Report 25

Graphics Features and Capabilities
Table 6 lists the same information for 3D textures.

7.8.7 Texture Transparency and Contouring

Textures may have full or partial transparency set at any texel location. If the entire outer
edge of the uniquely shaped texture, such as a tree, is set to transparent, the texture may
be placed upon a rectangular polygon and still appear to have the outline of a tree.

7.8.8 Perspective Correction

The raster subsystem performs per-pixel computations to correct textures and fog for
perspective distortions to insure that no artifacts are put into the rendering process.
These computations do not affect system performance.

7.8.9 Detail Texture

Detail texture increases the effectiveness of motion and position cues by providing addi-
tional detail on top of the existing texture as the textured surface draws nearer to the
eyepoint. Detail texture lets high-resolution textures be represented with a small high-
frequency characteristic texture and a lower resolution-base texture. The high-frequency
detail is smoothly combined with the base texture to give much of the visual qualities of
the original texture, while using a fraction of the texture memory.

7.8.10 Sharp Texture

Textures enable creation of highly realistic scenes, largely due to the ability to import
photographic images, which can be applied to geometry. The resolution of these images
is finite, however. When they are enlarged to the point where the textured polygon is
larger than the original texture resolution, magnification tends to blur the original image.

The solution is the patented Sharp Texture feature in the InfiniteReality subsystem,
which lets you specify that edges remain sharp during magnification. For example, this
enables the development of a simulation whose photo-derived sign textures would con-
tinue to be readable as they get close to the eyepoint of the viewer.

Texture Memory Resolution Number

16MB 128 x 128 x 128 4 (non-MIPmapped)

16MB 128 x 128 x 128 2 (MIPmapped)

64MB 128 x 128 x 128 16 (non-MIPmapped)

64MB 128 x 128 x 128 14 (MIPmapped)

Table 6. 3D Texture Sizes for 16-Bit Textures
26 InfiniteReality Technical Report

Graphics Features and Capabilities
7.8.11 Projective Texture

With Projective Texture, textures can be projected into a scene, bending over every sur-
face. This allows for sophisticated spotlighting effects, such as landing lights, and pro-
jection of camera data onto synthetic terrain.

7.8.12 Shadow Maps

InfiniteReality provides hardware support for shadowing. Applying shadows is a two-
step process: the scene of interest is first rendered from the light source point of view;
the depth information from the scene is then copied into texture memory. The result is a
shadow map. The scene is then rendered from the eyepoint. Hardware determines which
parts of the scene are in shadow and which are not, based on the shadow map, and lights
them accordingly. The approach can be extended to multiple light sources by rendering
in multiple passes.

7.8.13 Billboards

Billboards are textured faces that automatically track the eyepoint so that they are
always facing the viewer. A common application is for trees in a database.

7.8.14 Detail Management

You can restrict which MIPmap levels of detail are used. This allows use of a partially
loaded MIPmap. If a MIPmap is loaded starting at the coarsest level, the texture can be
used before its finest levels of detail have been loaded.

7.8.15 Video to Texture

Using the Sirius Video option, live video can be loaded in real time directly into texture
memory from a video source. This permits you to map broadcast-quality video directly
onto any three-dimensional (3D) surface and concurrently perform image processing
functions on the video stream.

7.8.16 3D Textures and Volume Rendering

InfiniteReality includes the advanced 3D texture feature, which enables real-time 3D
volume rendering. An example of this is viewing a series of two-dimensional medical
scans of a patient’s head.

InfiniteReality has the power to reconstruct the series of two-dimensional scans into a
three-dimensional volume. The volume can be manipulated (rotated, translated, filtered,
and more) in real time by continuously resampling (interpolating) the data in 3D. Vol-
ume rendering can be enhanced by using the following features:

• Slicing planes

• Perspective projection

• Embedded surfaces
InfiniteReality Technical Report 27

Graphics Features and Capabilities
For more information, see Fraser, Robert, “Interactive Volume Rendering Using
Advanced Graphics Architectures,” Silicon Graphics Computer Systems.

7.9 Imaging Operations

As in RealityEngine2, the Geometry Engine processors of InfiniteReality provide hard-
ware accelerated imaging operations, including convolution, minmax, histogram, color
matrix, and lookup tables. Because all pixel processing paths, including drawing, copy-
ing, and reading of pixels, texels, and video data, flow through the Geometry Engine
processors, these image operators can be applied between any source and destination.
For example, an application may copy pixels from a video source to texture memory and
perform color space conversion using the color matrix in one pixel transfer operation.

7.9.1 Convolution

The convolution operator filters linear images in real time. The user-definable filter per-
forms operations such as sharpening and blurring. InfiniteReality supports separable and
general convolution filters of size 3 x 3, 5 x 5 and 7 x 7. Separable filters are much faster
than general filters. Likewise, smaller filters are faster than larger filters. Applications
can trade off quality and throughput by choosing an appropriate filter size and type.

7.9.2 Histogram and Minmax

Histograms and minmax provide statistics on color component values within an image.
A histogram counts occurrences of specific color component values and reports them in
user-defined bins with up to 4,096 bins per component. Minmax tracks minimum and
maximum color component values. These statistics can be analyzed to create a more
balanced, better-quality image.

7.9.3 Color Matrix and Linear Color Space Conversion

The color matrix operation transforms the colors of each pixel by a user-defined 4 x 4
matrix. In addition to performing linear color space conversion, the color matrix can
also be used to perform color component swapping and component replication.

7.9.4 Window/Level Support

Remote sensing, medical imaging, and film editing applications can process data with a
greater dynamic range than a video monitor can display. The window/level operation
allows a subset of the data’s full dynamic range to be selected (windowed) and its con-
trast and brightness adjusted (leveled) so that important image features will be seen on
a monitor.

The frame buffer and imaging data path of InfiniteReality support display and texturing
using 16-bit luminance data, good for demanding high-precision imaging applications.
The 32K-entry color lookup table on the DG4 board enables real-time window/level
operations on multiple windows over 12-bit subranges without requiring images to be
redrawn.
28 InfiniteReality Technical Report

Graphics Features and Capabilities
7.9.5 Lookup Tables (LUTs)

Color tables can be inserted in various stages of the pixel path to adjust image contrast
and brightness after an image operation. Each color table can have up to 4,096 entries
per color component and can be loaded directly from host or frame buffer memory.

7.10 Atmospheric Effects

A programmable fog/haze function in InfiniteReality allows you to set an arbitrary fog
color that can be blended with the color of any element to be rendered. You can change
the fog for all or part of the scene on a per-channel or per-object basis. The amount of
fog or haze color you use depends on the depth value of each pixel of each selected
object.

You can specify the falloff function and the density of the fog. InfiniteReality also
allows you to specify a fog function using sample points.

Compared to RealityEngine2, the precision and the smoothness of fog/haze appearance
in InfiniteReality is greatly improved. Based on the viewing projection, depth range, and
the fog function itself, the system automatically optimizes generation of per-pixel fog
values. Each fog value generated has 12-bits of precision per color component.

7.11 Offscreen Rendering

InfiniteReality systems have abundant frame buffer memory–80MB on each Raster
Manager board—used to store pixels for very-high-resolution displays, or for multiple
video output channels. It also may be used to store pixels for offscreen rendering.

A frame buffer pixel contains from 256 to 1,024 bits, depending upon the system’s
Raster Manager board quantity and video output channel characteristics. Some bits are
dedicated to front and back color buffers (when applications use double buffering), the
depth (Z) buffer, and other buffers supported by OpenGL (see Figure 4).
InfiniteReality Technical Report 29

Graphics Features and Capabilities
Figure 4. Frame Buffer Pixel Memory

Remaining memory is available for other uses. Applications may invoke the
SGIX_fbconfig OpenGL extension to choose a frame buffer configuration for unas-
signed memory (see Figure 5).

Figure 5. Frame Buffer Pixel Memory Including Offscreen Buffers

Overlays
Color

Depth
Available space

Window

Pixel

Buffers

Overlays
Color

Depth
Color

Depth

Pixel

Window

Offscreen

Buffers

Buffers
30 InfiniteReality Technical Report

Graphics Features and Capabilities
After selecting a frame buffer configuration, applications may invoke the SGIX_PBuffer
OpenGL extension to create an offscreen rendering area called a PBuffer (Pixel Buffer).
PBuffers occupy part of the frame buffer not otherwise occupied by ordinary windows
(see Figure 6).

Figure 6. Disjoint Buffers and PBuffers

PBuffers are much like windows; OpenGL applications may render into PBuffers just as
they render into windows. However, PBuffers never obscure color buffers of windows
and are never displayed on any video output channel.

PBuffers may serve as a cache for frequently accessed images, improving performance
dramatically by removing the need to transfer pixels from host memory to the graphics
pipeline. They may be used for storing results of special-purpose renderings that are not
intended for display, such as shadow maps. PBuffers are also convenient repositories for
the intermediate results of multipass rendering algorithms, which produce effects such
as reflections, Phong shading, and bump mapping. Finally, PBuffers permit InfiniteReality
to accelerate background batch processing of long-running imaging operations without
disabling interactive use of the main display.

7.12 Multi-Channel Display Generator

The display generator feature takes digital, ordered pixel output from the frame buffer
and lets you specify from two to eight separate rectangular areas to be sent from the
rectangular frame buffer area managed by the x-server to independent component RGB
video outputs. Each video channel may have its own video timing, increasing flexibility
over previous products.

PBuffer

Window

Frame Buffer
InfiniteReality Technical Report 31

Graphics Features and Capabilities
7.12.1 Standard Formats and Format Combinations

To provide you with as much built-in flexibility as possible, InfiniteReality systems are
delivered with a broad range of software-selectable video formats and format combina-
tions, from NTSC to 1920 x 1080 progressive-scan HDTV. Tables 7 and 8 show
InfiniteReality formats shipped standard with the system.

Video Format Video Format File Notes

640 x 480 120Hz stereo 640 x 480_120s.vfo

640 x 480 180Hz
field sequential stereo

640 x 480_180q.vfo Color field sequential 180Hz
format

640 x 480 60Hz 640 x 480_60.vfo VGA

640 x 486 30Hz interlaced 640 x 486_30i.vfo

646 x 486 30Hz interlaced 646 x 486_30i.vfo Frame locking format

646 x 486 30Hz interlaced 646 x 486_30if.vfo NTSC

768 x 576 25Hz interlaced 768 x 576_25i.vfo PAL

768 x 576 25Hz interlaced 768 x 576_25if.vfo Frame locking format

770 x 576 25Hz interlaced 770 x 576_25i.vfo

800 x 600 60Hz 800 x 600_60.vfo SVGA

960 x 620 60Hz 960 x 620_60.vfo

960 x 680 60Hz 960 x 680_60.vfo

1024 x 768 120Hz stereo 1024 x 768_120s.vfo

1024 x 768 60Hz 1024 x 768_60.vfo

1024 x 768 96Hz stereo 1024 x 768_96s.vfo

1080 x 809 30Hz interlaced 1080 x 809_30i.vfo RS343-A “875-line” format

1120 x 840 96Hz stereo 1120 x 840_96s.vfo

1200 x 900 72Hz 1200 x 900_72.vfo High-resolution 4:3 format

1280 x 1024 114Hz stereo 1280 x 1024_114s.vfo

1280 x 1024 120Hz stereo 1280 x 1024_120s.vfo

1280 x 1024 25Hz PAL 1280 x 1024_25f.vfo Frame locking format

1280 x 1024 25Hz PAL 1280 x 1024_25r2.vfo Special format

1280 x 1024 25Hz PAL 1280 x 1024_25r3.vfo Special format

1280 x 1024 30Hz NTSC 1280 x 1024_30f.vfo Frame locking format

continued on page 33
32 InfiniteReality Technical Report

Graphics Features and Capabilities
Table 7. Standard Formats Shipped with All InfiniteReality Systems

1280 x 1024 30Hz NTSC 1280 x 1024_30r2.vfo Special format

1280 x 1024 50Hz 1280 x 1024_50.vfo

1280 x 1024 50Hz PAL 1280 x 1024_50f.vfo Frame locking format

1280 x 1024 60Hz 1280 x 1024_60.vfo High-resolution

1280 x 1024 60Hz 1280 x 1024_60f.vfo Frame locking format

1280 x 1024 72Hz 1280 x 1024_72.vfo

1280 x 959 30Hz interlaced 1280 x 959_30i.vfo

1500 x 1200 60Hz 1500 x 1200_60.vfo

1600 x 1200 60Hz 1600 x 1200_60.vfo Extra-high-resolution

1760 x 1100 60Hz 1760 x 1100_60.vfo

1920 x 1035 30Hz interlaced 1920 x 1035_30i.vfo Japan HDTV

1920 x 1080 72Hz 1920 x 1080_72.vfo US HDTV

1920 x 1152 25Hz interlaced 1920 x 1152_25i.vfo Euro HDTV

1920 x 1200 66Hz 1920 x 1200_66.vfo New ultra-high-resolution

1920 x 1200 75Hz 1920 x 1200_75.vfo

CCIR601_525 CCIR601_525.vfo

CCIR601_625 CCIR601_625.vfo

Standard Combinations Combiner File

1 1280 x 1024 60Hz 1280 x 1024_60.cmb

1 1280 x 1024 72Hz 1280 x 1024_72.cmb

1 960 x 680 60Hz 960 x 680_60.cmb

1 1024 x 768 60Hz 1024 x 768_60.cmb

1 1120 x 840 96Hz 1120 x 840_96s.cmb

1 1200 x 900 72Hz 1200 x 900_72.cmb

1 1600 x 1200 60Hz 1600 x 1200_60.cmb

Video Format Video Format File Notes

continued on page 34

continued from page 32
InfiniteReality Technical Report 33

Graphics Features and Capabilities

continued from page 33
Table 8. Standard Format Combinations Shipped with All InfiniteReality Systems

7.12.2 2-Channel and 8-Channel Configurations

Both versions of the InfiniteReality video display subsystem are multi-channel capable.
The standard version has two independent video channels for driving two separate RGB
displays or virtual reality (VR) stereoscopic displays, or for a single RGB video channel
and an independent video encoder. The high-performance version gives you eight inde-
pendent channels, each with its own 12-bit Gamma table. On either version, channel 1
can be a normal RGB channel or the video encoder channel.

Because multi-channel capability is included in the standard system, users do not need
to sacrifice a slot in the backplane to get this feature, even if the system is configured for
eight outputs. Also, unlike the RealityEngine2 MCO option, use of the InfiniteReality

1 1920 x 1035 30Hz interlaced 1920 x 1035_30i.cmb

1 1920 x 1080 72Hz 1920 x 1080_72.cmb

1 1920 x 1200 66Hz 1920 x 1200_66.cmb

1 1280 x 1024 60Hz and
1 NTSC

1280 x 1024 + NTSC_60.cmb

1 1280 x 1024 72Hz and
1 1920 x 1080 72Hz

1280 x 1024 + 1920 x 1080_72.cmb

1 1280 x 1024 60Hz and
4 640 x 480 60Hz

1280 x 1024 + 4@640 x 480_60.cmb

1 1280 x 907 60Hz and
5 640 x 453 60Hz

1280 x 907 + 5@640 x 453_60.cmb

2 1280 x 1024 60Hz 2@1280 x 1024_60.cmb

2 1280 x 1024 72Hz 2@1280 x 1024_72.cmb

3 1024 x 768 60Hz and
1 1280 x 959 30Hz interlaced

3@1024 x 768_60 + 1280 x 959_30i.cmb

3 1280 x 1024 60Hz 3@1280 x 1024_60.cmb

1 640 x 480 120Hz stereo 640 x 480_120s.cmb

7 800 x 600 60Hz and
1 NTSC

7@800 x 600_60 + NTSC.cmb

8 640 x 480 60Hz 8@640 x 480_60.cmb

8 800 x 600 60Hz 8@800 x 600_60.cmb

Standard Combinations Combiner File
34 InfiniteReality Technical Report

Graphics Features and Capabilities
multi-channel feature does not disturb or disable operation of the ‘main’ video output
channels. All additional channels are as easy to program as the main channel; the same
video format compiler works for all.

7.12.3 InfiniteReality Multi-Channel Features: Considerations

Several system resources must be considered in multi-channel applications: frame
buffer memory, frame buffer read/write bandwidth, DAC bandwidth, and frame buffer-
to-video subsystem transmission bandwidth.

7.12.3.1 Swap Rates Must Be Equal

Video formats that run together in a video combination must provide time for “house-
keeping” operations such as updating cursor position and glyph, setting parameters for
dynamic pixel resampling, and more. This may be done at field boundaries, frame
boundaries, or in certain cases, across multiple frames. This interval is defined by the
“maximum swap rate.” This rate must be the same for all video formats running
together, so that the InfiniteReality video display subsystem can simultaneously perform
these housekeeping services for all running video formats.

For example, a legal combination of formats would be the following:

• 30Hz interlaced NTSC (swap rate is the 60Hz field rate for this format)

• 60Hz non-interlaced 1280 x 1024

• 120Hz stereo (swap rate is the 60Hz frame rate)

• 180Hz color field sequential (again, the swap rate is the 60Hz frame rate)

Examples of illegal combinations would be NTSC (60Hz swap rate) and PAL (50Hz
swap rate), or 60Hz and 72Hz versions of 1280 x 1024. In these cases, the swap rates are
not the same.

“Equal” is a relative term. For example, NTSC, which really runs at 59.94Hz field rates,
is “close enough” to be run with 60Hz 1280 x 1024. In general, if the swap rates are
close enough to allow the video formats to be reliably synchronized to one another, they
are considered “equal.” This tolerance is usually less than 0.2 percent.

7.12.3.2 Frame Buffer-to-Video Display Subsystem Transmission Bandwidth

Digital video data is sent serially from the InfiniteReality frame buffer to the video sub-
system. Each video channel uses a portion of the system’s aggregate video transmission
bandwidth. The required bandwidth per channel depends on the resolution of the video
output format running on that channel and on the type of video it receives from the
frame buffer. The requirements of all video channels must be less than the aggregate
video bandwidth of the system.

Depending on the number and precision of color components requested from the frame
buffer by each video channel, the available video transmission bandwidth ranges from
approximately 290M pixels/sec (for 10-bit RGB or 12-bit color field-sequential video)
to 210M pixels/sec (for 10-bit RGBA or 12-bit RGB video). The digital data stream
InfiniteReality Technical Report 35

Graphics Features and Capabilities
from the frame buffer to a particular video channel must be of a single type and preci-
sion, for example, 10-bit RGB. However, different video channels (and associated digi-
tal video streams from the frame buffer) may be mixed: one channel may request 10-bit
RGB, while another channel may request 12-bit RGB, and yet another channel may
request 10-bit RGBA. Depending on the mix of currently running video formats, the
total required video transmission bandwidth will fall between approximately 210M and
290M pixels/sec.

Distinguishing the transmission format for video from the “depth” of pixels in the frame
buffer is important. Pixel depth (“small,” “medium,” “large,” “extra-large”) must be uni-
form across the entire managed area of the frame buffer. As stated above, the format of
the colors transmitted as video from a frame buffer to the video display subsystem may
vary on a per-channel basis to conserve aggregate video transmission bandwidth. Frame
buffer memory stores non-video information about each pixel (such as multisample and
Z information); the color fields are a subset of the frame buffer pixel storage. Distin-
guishing between frame buffer representation of pixels and the format chosen for video
transmission to the video display subsystem is important, if you want to understand and
optimize the performance of both the frame buffer memory and video display sub-
system.

The total frame buffer-to-video-subsystem bandwidth is independent of the number of
Raster Manager boards in the system.

7.12.3.3 DAC Output Bandwidth

When configuring a video format combination, you must decide which format to assign
to which video channel. The first two video channels have DACs with a 220M pixel/sec
bandwidth limit. The remaining six channels have a 170M pixel/sec bandwidth limit.
Because each channel can do dynamic resampling, actual video resolution as output by
the DAC (and seen by the display monitor connected to the channel) may be higher than
the resolution of the rectangular region of the frame buffer assigned to that channel. The
highest-bandwidth video formats of a video format combination should always be
assigned to channels 0 and 1.

7.12.3.4 Frame Buffer Memory

Another requirement for video format combinations is that they must all be able to tile
rectangular subregions of a rectangular frame buffer. Depending upon the “depth” of
pixels selected and the number of Raster Manager boards installed, some combinations
of formats may require more than one Raster Manager board. When selecting frame
buffer pixel depth you must consider the quality of multisampling, the precision of the
Z-buffer and RGB colors stored in the frame buffer, and total system fill-rate capability.

Adding RM boards does not increase total frame buffer to video subsystem bandwidth,
but it increases the total drawing fill-rate available, and amortizes the video refresh over-
head over more RM boards, leaving more fill-capacity available for drawing.
36 InfiniteReality Technical Report

Graphics Features and Capabilities
7.12.3.5 Frame Buffer Read/Write Bandwidth

A final consideration for video format combinations is the overhead that refreshing
video channels presents to the frame buffer. The greater the number and resolution of
video channels, the more the pixel fill-rate of the system is reduced. A particular combi-
nation of formats may fit into a 1-RM or 2-RM configuration, but it may unacceptably
reduce the fill rate.

7.12.4 Video Format Combiner Tool

To make the necessary tradeoffs between these requirements, the system includes the
Video Format Combiner software tool. This tool has a command-line interface and a
graphical user interface (GUI). Using the GUI form, it can easily see which regions of
the frame buffer are mapped to which channels. Pixel bandwidth and fill-rate overhead
due to video are dynamically displayed. When system limits are exceeded, the tools
attempt to provide hints about what remedial action to take.

If system resources of a target hardware configuration are sufficient enough to support a
group of video formats, the combiner tool creates a combination file with filename ref-
erences to the video formats and information about configuring the video hardware to
run that channel combination.

Only video format combinations ‘approved’ by the video format combiner are allowed
to be loaded into the video subsystem (even if only a single channel is enabled). This is
done with the video format combiner itself or with the familiar setmon program. In
addition, there is a programming interface provided by an X-Windows™ server exten-
sion, XSGIvc, for application developers who want to integrate video control into their
applications.

Figure 7 shows an example of using the video format combiner tool interactively to
place six video channels on a 1-RM InfiniteReality system in a managed area of
1920 x 1360 pixels. “Small” (256-bit) pixels are used. Channel 0 is a 1280 x 1024 video
format mapped to a 1280 x 907 region of the frame buffer using static resizing. Chan-
nels 1 through 4 are in a 640 x 480 video format. Using static resizing, each is mapped
to a 640 x 453 region of the frame buffer.

This example illustrates the use of video resizing to efficiently use the frame buffer. If
static resizing were not used, only four 640 x 480 channels would fit in addition to the
1280 x 1024 channel. Note indicators at the bottom of the screen that show this video
format combination is using 58.90 percent of the available pixel transmission band-
width, and that the fill capability of this combination is reduced by 18.45 percent. For
comparison, a single 1280 x 1024 screen would reduce the fill rate of a 1-RM system by
about 10 percent. In other words, when running this combination, 81.55 percent (100
percent – 18.45 percent) of the fill rate is available for drawing into the frame buffer.
InfiniteReality Technical Report 37

Graphics Features and Capabilities
Figure 7. Using the Video Format Combiner to Place Six Video Channels

7.12.5 Examples of Video Format Combinations

As an example, a 1-RM system supports two 1280 x 1024, 60Hz noninterlaced channels
using “small” pixels. Adding another RM board allows the use of two of these channels
with “medium” (512-bit) pixels, or three channels using “small” pixels. A 2-RM config-
uration supports eight channels at 800 x 600 pixels at 60Hz. The video combiner tool

Error: <none>

Bandwidth Used Reduced Fill
58.90% 18.45%

Download combination Edit globals...
38 InfiniteReality Technical Report

Graphics Features and Capabilities
allows these kinds of “what if” scenarios to be explored, enabling users to easily config-
ure the InfiniteReality graphics system for their particular application. Table 9 shows
several example configurations. Many others are possible.

7.12.6 Dynamic Resolution

InfiniteReality incorporates on-the-fly video resampling on all its video channels. This
feature is “Dynamic Resolution”. Dynamic resolution works on all video formats with
pixel rates of 120MHz or less.

(Note: This restriction eliminates only the highest-resolution formats.)

This feature provides several benefits:

• Dynamic Resolution, available through IRIS Performer™ as well as OpenGL, gives
you a powerful new method of guaranteeing scene update rates. This method works
in addition to geometric level-of-detail methods.

• The video encoder channel can now encompass an entire video channel, allowing
whole-screen recording without an external scan-converter. For video formats with
pixel clock rates above 120MHz, the encoder works in “pass-through” mode similar
to RealityEngine2, allowing recording of a pannable NTSC or PAL-sized region of
the display.

• Dynamic resampling of a frame buffer region allows a smaller frame buffer region to
be “zoomed” or enlarged to fit the video format resolution of the video channel
assigned to that frame buffer region. This aids efficient use of frame buffer memory
without requiring non-standard video formats.

Video Format
Combinations Notes

2 @ 1280 x 1024, 60Hz Uses all memory on 1-RM (“small” frame buffer pixels)

3 @ 1280 x 1024, 72Hz Uses nearly the entire available pixel bandwidth. Requires
2-RMs for sufficient memory (“small”pixels)

8 @ 800 x 600, 60Hz Uses all channels. Needs 2-RMs for sufficient memory
(“small” pixels)

7 @ 800 x 600, 60Hz +
NTSC Encoder

Uses all channels. Channel 1 is used by Composite Video
Encoder when enabled.

3 @ 1024 x 768, 60Hz +
RS343-A 1260 x 945, 30Hz
interlaced

Not all formats need the same resolution. Field rates of all
video formats must match. Requires 2-RMs for sufficient
memory (“small” pixels)

1 @ 1920 x 1080 +
1 @ 1280 x 1024 both at
72Hz

1920 x 1080 channel must be assigned to high-speed DAC
(channel 0 or channel 1). Requires 2-RMs for sufficient
memory (“small” pixels)

Table 9. Examples of Video Format Combinations
InfiniteReality Technical Report 39

Graphics Features and Capabilities
7.12.7 Stereoscopic Video Output

InfiniteReality continues the RealityEngine2 style of support for stereoscopic viewing in
a window. Individual windows may be run in stereoscopic viewing mode, displaying a
separate left-eye view and right-eye view each 120th of a second. All other windows and
pop-ups appear normal.

7.12.8 Direct Support of Color Field Sequential Video

InfiniteReality provides direct, efficient support of time-multiplexed, sequential color
field video, commonly known as color field-sequential video. Cursors and color index
pop-up regions appear in their true colors, making it easy to integrate applications using
color field-sequential video with the X-Windows environment.

7.12.9 Luminance

Luminance (monochrome rendering) is supported by the video display subsystem.
Applications may select luminance to be displayed as color mapped pseudo-color or as
static-gray X-visual. Ultra-high color resolution (16 bits) is supported for rendering
operations such as texture (but not lighting) using luminance.

7.12.10 Programmable Video Timing

InfiniteReality advanced circuitry generates a programmable pixel clock to enable the
broadest range of applications, from video production to visual simulation. The clock
controls the rate at which the frame buffer is scanned out to a video signal. The standard
system supports 1920 x 1200 pixels at 66Hz non-interlaced.

Some applications need different video timing, such as military displays requiring the
RS-343 standard, or stereoscopy for molecular modeling, which requires 120Hz video
field rate to output a left-eye view and a right-eye view at 60Hz each. InfiniteReality
programmable video timing supports these and other video formats. By introducing the
InfiniteReality Video Format Compiler, InfiniteReality puts video format programming
capability in your hands.

Video formats produced by the Video Format Compiler must be put into a video format
combination using the Video Format Combiner tool (Section 7.12.4) to validate that
they will operate correctly on the InfiniteReality video display subsystem hardware. In
the case of a single format, the word “combination” is a misnomer; the key concept is
that all video formats, whether running alone or in combination with other video for-
mats, must be validated by the video combiner to ensure that the video format is com-
patible with the display hardware.
40 InfiniteReality Technical Report

Graphics Features and Capabilities
7.13 Genlock

To ensure that InfiniteReality graphics subsystems video output is synchronized with
other video sources or pipelines, the system includes a standard external genlock capa-
bility. Genlock assures that multiple video sources all start scanning out their frames at
the same time for frame-synchronized multi-channel output.

Video channels in video subsystems of InfiniteReality are automatically frame-
synchronized, whether they are of the same resolution, and regardless of whether the
external genlock feature is enabled. External genlock capability lets the master video
format (the format running on the lowest-numbered video channel) genlock to an exter-
nal video source.

Unlike previous systems, the external video source only needs the same vertical sync
rate as the master format; it does not need the identical format running on the master
channel. This provides maximum flexibility in synchronizing to multiple InfiniteReality
graphics pipelines, or to video equipment of other vendors.

There are three methods of frame synchronization:

• Genlock

• Frame-lock

• Frame-reset

The best of these is genlock. It is used when two video formats are the same resolution
and frame rate. The internal circuitry is able to make adjustments every horizontal
period to insure that the system is locked.

The next-best method is frame-lock which is similar to genlock. But adjustments are
made at intervals corresponding to the least-common multiple of the two dissimilar hor-
izontal rates in the two video formats because of differences in format resolution.

If the least-common multiple period is too great, the system uses the frame-reset method
of synchronizing frames. In the frame-reset method, the system merely issues a reset
signal to the timing circuitry of the system to be synchronized. This method may allow
frames to be “dropped” occasionally. Genlock and frame-lock guarantee that frames
will not be dropped or missed.

The video combiner tool will select the best-quality frame synchronizing method, based
on the video formats in the combination file, and the video format selected for external
genlocking.

7.13.1 Video Options

In addition to the standard display options available from the InfiniteReality display
subsystem, the Sirius Video option board is available for functions such as real-time,
broadcast-quality video image capture and recording.
InfiniteReality Technical Report 41

Graphics Features and Capabilities
7.13.2 Video Input

Sirius Video serves applications needing live video input. Sirius Video gives you two
inputs, which can be blended using incoming alpha key, internal chroma key generation,
or a key generated in real time from InfiniteReality graphics.

7.14 Sirius Video Option

Sirius Video provides real-time video input to the InfiniteReality graphics system
through a proprietary interconnect, or to the POWERchannel-2 system bus through the
industry-standard VME interface. Thus, live video can be routed to InfiniteReality tex-
ture memory at full video frame rates, giving you live video textures onto 3D geometry.
This enables a new class of 3D digital video effects as well as giving you tight integra-
tion between graphics and video. In addition, Sirius Video gives you video input and
output interface from disk and memory subsystems (via VME). An equipped Onyx,
POWER Onyx, CHALLENGE, or POWER CHALLENGE can therefore read and write
real-time uncompressed video to and from disk or memory.

Sirius Video supports real-time output of CCIR601 (parallel is standard, serial 601 is an
option), 4:4:4:4 digital video, YUVA, RGBA, Composite, and S-Video formats in 8-bit
and 10-bit resolutions. It also provides both V-LAN and GPIB for machine control, as
well as blending, color space conversion, and chroma keying. As with video channels on
InfiniteReality, full-screen scan-conversion is supported on the Sirius Video channel.

Applications requiring live video input are served by the Sirius Video option. Sirius
Video gives you two inputs which can be blended using incoming alpha key, internal
chroma key generation, or by using a key generated in real time from InfiniteReality
graphics.

7.15 Integration with X Window System

InfiniteReality graphics are integrated with the X Window System™, giving multiple,
independent graphics displays from a single frame buffer. The X11 standard is fully sup-
ported, and native OpenGL is integrated without degradation of graphics pipeline per-
formance when drawing into windows (versus a dedicated full screen).

InfiniteReality also unites a number of unique capabilities with respect to X Window
System support. Up to 16 windows can have their own 12-bit color look-up-tables
(LUTs) to provide a stable, independent data space that does not require reloading with
each current window switch.
42 InfiniteReality Technical Report

	1.0 Introduction
	1.1 System Configurations
	Figure 1. InfiniteReality Deskside System Block Di...
	Figure 2. InfiniteReality Rack System Block Diagra...
	Figure 3. i-Station System Block Diagram (includes...

	1.2 About this Document

	2.0 InfiniteReality
	3.0 OpenGL
	4.0 Geometry Subsystem
	4.1 Geometry Engine

	5.0 Raster Subsystem
	5.1 Texture Processing
	5.2 Pixel Processing

	6.0 Display Subsystem
	7.0 Graphics Features and Capabilities
	7.1 Resolution
	7.2 Graphics Primitives
	7.3 Transformations
	7.3.1 Immediate Mode
	7.3.2 Display Lists
	7.3.3 Primitive Processing
	7.3.4 Sprites

	7.4 Color
	7.4.1 Shading
	7.4.2 Color Blending
	7.4.3 Lighting
	7.4.4 Advanced Lighting Model
	Table 1. Lighting Model Components

	7.4.5 Surface Properties
	7.4.6 Infinite Light Sources
	7.4.7 Local Light Sources

	7.5 Transparency
	7.6 Hidden Surface Removal
	7.7 Anti-Aliasing
	7.7.1 Sample Memory
	Table 2. Anti-Aliasing Sample Memory Options

	7.8 Texture/Image Mapping
	7.8.1 Texture Download
	Table 3. Texture Rate for 512 x 512 Texture

	7.8.2 Texture Formats
	7.8.3 Texture Filtering
	7.8.4 Global Texturing
	7.8.5 Modulation and Decals
	7.8.6 Texture/Image Memory
	Table 4. Largest 16-Bit Texture Maps
	Table 5. 2D Texture Memory Sizes and Quantities
	Table 6. 3D Texture Sizes for 16-Bit Textures

	7.8.7 Texture Transparency and Contouring
	7.8.8 Perspective Correction
	7.8.9 Detail Texture
	7.8.10 Sharp Texture
	7.8.11 Projective Texture
	7.8.12 Shadow Maps
	7.8.13 Billboards
	7.8.14 Detail Management
	7.8.15 Video to Texture
	7.8.16 3D Textures and Volume Rendering

	7.9 Imaging Operations
	7.9.1 Convolution
	7.9.2 Histogram and Minmax
	7.9.3 Color Matrix and Linear Color Space Conversi...
	7.9.4 Window/Level Support
	7.9.5 Lookup Tables (LUTs)

	7.10 Atmospheric Effects
	7.11 Offscreen Rendering
	Figure 4. Frame Buffer Pixel Memory
	Figure 5. Frame Buffer Pixel Memory Including Offs...
	Figure 6. Disjoint Buffers and PBuffers

	7.12 Multi-Channel Display Generator
	7.12.1 Standard Formats and Format Combinations
	Table 7. Standard Formats Shipped with All Infinit...
	Table 8. Standard Format Combinations Shipped with...

	7.12.2 2-Channel and 8-Channel Configurations
	7.12.3 InfiniteReality Multi-Channel Features: Con...
	7.12.3.1 Swap Rates Must Be Equal
	7.12.3.2 Frame Buffer-to-Video Display Subsystem T...
	7.12.3.3 DAC Output Bandwidth
	7.12.3.4 Frame Buffer Memory
	7.12.3.5 Frame Buffer Read/Write Bandwidth

	7.12.4 Video Format Combiner Tool
	Figure 7. Using the Video Format Combiner to Place...

	7.12.5 Examples of Video Format Combinations
	Table 9. Examples of Video Format Combinations

	7.12.6 Dynamic Resolution
	7.12.7 Stereoscopic Video Output
	7.12.8 Direct Support of Color Field Sequential Vi...
	7.12.9 Luminance
	7.12.10 Programmable Video Timing

	7.13 Genlock
	7.13.1 Video Options
	7.13.2 Video Input

	7.14 Sirius Video Option
	7.15 Integration with X Window System

