
Jim Ammon 5/7/98 Silicon Graphics

Hypercube Connectivity within ccNUMA
Architecture

The Silicon Graphics Origin2000TM and Onyx2TM systems are structured to fit a customer’s specific appli-
cations and problem sizes. This is accomplished with the company’s ccNUMA (cache coherent non-uni-
form memory access) architecture, which can link multitudes of processors together in such a way that
the number of interconnections scales with the growth of the system, avoiding the bandwidth limitations
of bus-based architectures. The multidimensional nature of the interconnectivity that allows the architec-
ture to accomplish unprecedented levels of system scalablity is the particular focus of this paper.

Basic Building Blocks
The ccNUMA architecture, for the purposes of this discussion, consists of two basic components: a node
and a router. The node is a circuit board with two CPUs on it. The router is a crossbar chip that resides on
the router board. It has a total of six connections for linking together node and router boards:

Three of the router connections are on
the board's bulkhead and connect to
other router boards via CrayLinkTM

cables.

The three remaining connections mate
with the system backplane, allowing
the router to connect to two node
boards and a second router within the
same enclosure.

Since each node board has two
CPUs, a router can directly connect
to four CPUs within the same en-
closure. Additionally, the router to
router connection across the back-
plane ultimately allows eight
CPUs to be interconnected within
a single enclosure. Further system
expansion can be realized by con-
necting to routers in other
enclosures via the CrayLink cables.

System Backplane

Router Chip

Bulkhead

CrayLink to
Other Routers

Backplane Connector

CrayLink to
Other Routers

Node Board

Backplane

System
Enclosure

Hypercube Connectivity within ccNUMA Architecture 2

Jim Ammon 5/7/98 Silicon Graphics

Principles of Hypercube Connectivity
The ccNUMA architecture links up multitudes of routers and nodes by emulating a multidimensional
geometrical construct known as a hypercube. A hypercube possesses the following properties:

•A hypercube has n spacial dimensions, where n can be any positive integer (including zero)

•A hypercube has 2n vertices
•There are n connections (lines) that meet at each vertex of a hypercube
•All connections at a hypercube vertex meet at right angles with respect to each other

Conceptually speaking, each router chip is equivalent to the vertex of a hypercube and each cable or back-
plane connection is equivalent to a line that connects two hypercube vertices. Thus, the hypercube is the
underlying router interconnection architecture into which the nodes are connected. This may sound com-
plicated, but hypercubes up to three dimensions are actually familiar structures, which will be demon-
strated below.

0D Hypercube
A zero-dimensional hypercube is simply single point
or vertex (20=1 vertices). This point would be a router,
with up to two nodes attached (for clarity, the nodes
will not be shown for higher-dimensional hypercubes).

Vertices =1
CPUs = 4 CPUs/vertex ✕ 1 vertex = 4
Total Vertex Connections = 0

1D Hypercube
A one-dimensional hypercube is 21=2 vertices con-
nected together, with n=1 connection at each point. This
is simply a line. It can be thought of as a point that has
been duplicated and stretched apart in the x axis.

Vertices = 2
CPUs = 4 CPUs/vertex ✕ 2 vertices = 8
Total Vertex Connections = 1

2D Hypercube
A two-dimensional hypercube has 22=4 vertices, with
n=2 connections at each vertex. This is nothing more
than a square. This can be thought of as a line that has
been duplicated and stretched apart in the y axis.

Vertices = 4
CPUs = 16
Total Vertex Connections = 4

3D Hypercube
A three-dimensional hypercube has 23=8 vertices,
with n=3 connections at each vertex. This is familiar to
us as a cube. It can be constructed by duplicating a
square and stretching it apart in the z axis. It can be
seen that in all of the hypercubes the connections at
each vertex meet at right angles to each other.

Vertices = 8
CPUs = 32
Total Vertex Connections = 12

Cube

Square

Line

Point
0D

2D

3D

1D

Hypercube Connectivity within ccNUMA Architecture 3

Jim Ammon 5/7/98 Silicon Graphics

Note that with the addition of each dimension, the number of vertices in the hypercube doubles. This con-
cept suggests a double-and-stretch method can be used to understand the connectivity of hypercubes with
greater than three dimensions, even though true visualization of 4+ spacial dimensions is beyond human
ability.

Visualizing 4D Hypercube Connectivity

We begin with a 3D cube.

The cube is duplicated, or doubled, upon itself with connec-
tions between the twin vertices.

The twin cubes are pulled away from each other in the direc-
tion of the new fourth dimension, stretching the links
between twin vertices.

The resulting structure is two 3D cubes with eight links connect-
ing the common corners between the cubes. If we had a 4D piece
of paper available to us, we could have drawn the 4D cube with-
out any of the lines crossing each other. We cannot construct or
imagine a true 4D structure in our 3D universe, but we can build a
system that maintains the same vertex-to-vertex connectivity.

Another very useful technique for visualizing 4D+ hypercubes is available, which we will dub dimen-
sion-replacement:

Imagine that a 4D structure is simply a 1D structure com-
bined with a 3D structure. So, we can replace the 0D vertices
at the two ends of a 1D line with 3D cubes.

The single line is then replaced with eight lines connecting
common corners. It is as if each 0D point “expanded” to 3D
and the 1D line split into eight connecting lines. This yields
the same structure that resulted from the double-and-stretch
method.

The 4D diagram can be cleaned up by drawing the structure
as two 3D cubes connected by a line that represents the eight
corner-to-corner connections.

Our 4D hypercube (constructed with either method)
possesses the following attributes:

Vertices = 16
CPUs = 4 ✕ 16 vertices = 64
Total Vertex Connections = 32

1D + 3D

= 4D

3D

Double

Stretch

4D

Hypercube Connectivity within ccNUMA Architecture 4

Jim Ammon 5/7/98 Silicon Graphics

The double-and-stretch and dimension-replacement methods can be extended for all 4D+ hypercubes:

Double and Stretch Dimension Replacement

4D Hypercube
Vertices = 16
CPUs = 64
Total Vertex Connections =32

5D Hypercube
Vertices = 32
CPUs = 128
Total Vertex Connections = 80

6D Hypercube
Vertices = 64
CPUs = 256
Total Vertex Connections = 192

2D

+

3D

3D

+

3D

Hypercube Connectivity within ccNUMA Architecture 5

Jim Ammon 5/7/98 Silicon Graphics

Double and Stretch Dimension Replacement

6D Hypercube
For clarity, the 6D cube is redrawn
without connections between the 3D
cubes.

Note that at this point, the patterns
again repeat themselves. However,
instead of two 3D cubes connected
together with eight lines to form a
4D cube, we will have two 6D
cubes connected together with 64
lines to form a 7D cube.

7D Hypercube
Vertices = 128
CPUs = 512
Total Vertex Connections = 448

8D Hypercube
Vertices = 256
CPUs = 1,024
Vertex Connections = 1,024

The 8D system, as will be seen, is the practical limit for a six-port router, but the double-and-stretch and
dimension-replacement methods can be repeated ad infinitum to visualize multidimensional hypercubes.

Simplified 7D

1D

6D

+

2D

+

6D

Diagram

Hypercube Connectivity within ccNUMA Architecture 6

Jim Ammon 5/7/98 Silicon Graphics

Bandwidth Advantages of Hypercube-Based Systems
A common method for evaluating the effectiveness of a system’s interconnectivity is to look at the sys-
tem’s bisectional bandwidth. The bisectional bandwidth is determined by dividing a system in half (bisect-
ing) and counting the number of cut connections that normally would have allowed one half of the
system to communicate with the other. As the number of CPUs in a system grows, it is desirable to have
the bandwidth grow proportionally to prevent bottlenecks. The following examples will illustrate the dif-
ferences in bisectional bandwidth between hypercube-based and bus-based systems of similar size.

For the purposes of illustration, it will be assumed that within both the hypercube and bus systems,
all system interconnection occurs between routers, to which four CPUs are attached.

Hypercube-Based Systems Bus-Based Systems

16 CPUs 16 CPUs
Bisectional Cuts = 2 Bisectional Cuts = 2
Bisectional Bandwidth Bisectional Bandwidth

= 2 Cuts/16 CPUs = 2 Cuts/16 CPUs
= 1/8 Cuts per CPU = 1/8 Cuts per CPU

32 CPUs 32 CPUs
Bisectional Cuts = 4 Bisectional Cuts = 2
Bisectional Bandwidth Bisectional Bandwidth

= 4 Cuts/32 CPUs = 2 Cuts/32 CPUs
= 1/8 Cuts per CPU = 1/16 Cuts per CPU

64 CPUs 64 CPUs
Bisectional Cuts = 8 Bisectional Cuts = 2
Bisectional Bandwidth Bisectional Bandwidth

= 8 Cuts/64 CPUs = 2 Cuts/64 CPUs
= 1/8 Cuts per CPU = 1/32 Cuts per CPU

It can be seen that the hypercube system enjoys a constant 1/8 Cuts per CPU, regardless of size, but the
bus system suffers from a halving of its connections per CPU every time the system doubles in size. This
loss of proportional bandwidth in the bus system can cause severe bottlenecks, especially in large systems.

It should not be surprising that the bandwidth for the hypercube system remains constant, when one con-
siders that an n+1 dimensional hypercube can be constructed by doubling an n-dimensional hypercube
and connecting the common vertices. It should also be noted that the bisectional bandwidth of a hyper-
cube is not affected by the direction of the cut. For example, the 32-CPU cube above could have been
bisected horizontally, instead of vertically, and still yielded four cut connections. This is due to the fact
that hypercubes are symmetrical in all dimensions.

Bisector

Bisecting
Plane

Hypercube Connectivity within ccNUMA Architecture 7

Jim Ammon 5/7/98 Silicon Graphics

Metarouters and Large System Connectivity
As mentioned, each vertex of a hypercube represents a router with six connections. Two connections link
to node cards, while the remaining four connect to other routers. In an n-dimensional system, each router
will need n+2 connections: n connections to the other routers and 2 connections to the node cards. This is
no problem up to a 4D system, where all six router connections are utilized. However, for an 8D system, a
10-connection super router is required. Such a router is impractical, but it is possible to construct a virtual
super router, or VSR, by connecting two normal routers together.

Each router uses one port to connect to the
other router. This leaves five ports free on
each router for a total of 10 ports leaving
the envelope of the VSR.

It is now possible to construct a 5D+ sys-
tem by replacing all single routers residing
at the hypercube vertices with VSRs, as
shown in the 128-CPU system at right.

However, it is impractical to fit an entire
VSR in a single enclosure. Remembering
that a VSR is really two normal routers con-
nected with a CrayLink cable, we can
simply stretch apart a VSR to suit our
needs. This can be demonstrated with the
#1 cube-corner connections of our 128-CPU
system.

The resulting structure, is four local 32-CPU
cubes connected into a metarouter ring (local
will refer to routers located within the 32-
CPU cubes; the prefix meta- will refer to
routers and associated structures that con-
nect only to other routers).

Performing this operation with the other
seven cube corners would yield a total of
eight metarings. Routers in one metaring do
not connect to routers in another.

2D Metarouter Ring #1

Stretched VSR

1 1

1 1

VSR Envelope

510

1 2 3 4

9 8 7 6

VSRs replace all
single routers at

128-CPU Top View

1 2 1 2

3 4 3 4

1 2 1 2

3 4 3 4

1 1

1 1

128-CPU Top View
Cube vertex connections
2-4 not shown for clarity.

Cube vertices
1-4 shown

Local Cube

vertices

Hypercube Connectivity within ccNUMA Architecture 8

Jim Ammon 5/7/98 Silicon Graphics

The additional ports provided by the metarouters allow continued system expansion for five dimensions
and beyond. This will be demonstrated below, starting with the 5D-metaroutered system that was just
constructed.

5D-Based System
128 CPUs

Each of the local cubes’ eight corners con-
nects to a different metarouter layer: #1
corners connect to metalayer #1, #2 corners
connect to metalayer #2, and so on. Regard-
less of system dimensionality, there will
always be eight metalayers to connect to the
eight corners of the local cubes. Also, the
metastructure will always have (n - 3) di-
mensions. Hence, the 5D system at right
contains a 5D - 3D = 2D metastructure.

In the simplified diagram, the eight non-
connecting metalayers are represented
by a single shaded structure.

6D-Based System
256 CPUs

The 6D system is two 5D systems con-
nected through the metarouter rings in
each 5D half of the system. This forms
eight 3D (6D - 3D = 3D) metarouter
cubes in the center of the system.

7D-Based System
512 CPUs

The 7D system is two 6D systems con-
nected through the 3D metacubes in the
center of each 6D half.

In the simplified diagram, it can clearly
be seen that the 7D system can also be
thought of as a 4D (7D - 3D = 4D) meta-
structure, into which 16 local cubes are
connected.

8-Layer 2D Metarouter Structure
Simplified 5D
Diagram

2D Metarouter Ring
Rings (layers) 3-8 removed for clarity

1
2

1
2

2

1

2

1

Simplified 7D
Diagram

8-Layer
3D Metarouter
Structure

8-Layer
4D Metarouter
Structure

Hypercube Connectivity within ccNUMA Architecture 9

Jim Ammon 5/7/98 Silicon Graphics

8D-Based System
1024 CPUs

Finally, the 8D system
is two 7D systems
hooked together via
the two 4D metacube
structures. It can also
be thought of as a 5D
metastructure, into
which 32 local cubes
are connected.

The 8D system utilizes all
six ports on the metarouters.
Thus, 1,024 CPUs is the prac-
tical limit for the ccNUMA
architecture.

Bisectional Bandwidth of Metaroutered Systems
The use of metarouter structures to achieve 5D+ sized systems may lead one to conclude that the system
bisectional bandwidth is somehow altered from the 1/8 connections per CPU that was demonstrated for
nonmetaroutered systems. In fact, this bandwidth per CPU is not altered. For example, if one were to ver-
tically bisect the 8D system, above, into two 7D systems, two 64-connection metabundles would be cut,
yielding a total of 128 cut connections.

The resulting bandwidth per CPU is 128 connections/1,024 CPUs = 1/8 connections per CPU.

D
C

A

To Cube B

B

To Cube C

Detail of connections at
a single metarouter.
Some connections
removed for clarity.

1
2

3
4 5

6

8-Layer
5D Metarouter
Structure

Hypercube Connectivity within ccNUMA Architecture

Jim Ammon 5/7/98 Silicon Graphics

Summary of ccNUMA Hypercube Attributes

Dims CPUs Routers (vertices) Router-to-Router Connections

Local Meta Total Backplane CrayLink Total

0 4 1 - 1 0 0 0
1 8 2 - 2 1 0 0
2 16 4 - 4 2 2 4
3 32 8 - 8 4 8 12
4 64 16 - 16 8 24 32

5 128 32 32 64 16 96 112
6 256 64 64 128 32 204 236
7 512 128 128 256 64 472 536
8 1,024 256 256 512 128 1,072 1,200

Acknowledgments
The description of the dimension-replacement technique was adapted from the following article:

Tamiko Theil, “The Design of the Connection Machine,” Design Issues, Volume
10, Number 1, Spring 1994.

Special thanks to Dave Lima, Dan Farmer, Richard Singer and Sally Abolitz for their helpful comments
while reviewing this paper.

Comments
Please submit comments to:

Jim Ammon
Silicon Graphics
2011 N. Shoreline Blvd., MS 565
Mountain View, CA 94043

(650) 933-3512 (phone)
(650) 961-9075 (fax)

jammon@engr.sgi.com

